
In ternationa l
Scholars
Journa ls

International Journal of Banking, Economics and Finance ISSN: 8201-4728 Vol. 2 (12), pp. 001-012, December, 2018.
Available online at www.internationalscholarsjournals.org © International Scholars Journals

Author(s) retain the copyright of this article.

Full Length Research Paper

A contribution to software service improvement

based on LSP method

Vidan Markovi1 and Rado Maksimovi2*

1
Faculty of Sciences, Department for Computer Systems, University of Novi Sad, Novi Sad, Serbia.

2
Faculty

of Technical Sciences, Department for Industrial Engineering and Management, University of Novi Sad, Novi
Sad, Serbia.

Accepted 27 September, 2018

With new technologies and various software solutions readily available for utilization in business
environment, the main driver for achieving the competitive business advantage is becoming the quality
of service. The quality of service expectations is very often managed by established service level
agreement (SLA). Behind SLA, there is a real software, infrastructure, organization, culture, and people
that maintain it. Therefore, it is very important to take in consideration the complexity of the software
solution that is the basis of the given service, probability of an error occurrence, and all costs, and
risks that will be associated with operating the service. In this paper, the important elements of the
quality of the software that is considered as a service to a business function are analyzed. The proposal
for the classification within specific portfolio of software services is given. The logical scoring of
preferences (LSP) method is proposed to be utilized for services elementary preferences estimates and
overall services comparison within each rank of services. The main objective is in achieving better
quality of service within the given rank by recognizing and then emphasizing elements in the services
that positively influence overall estimates of the observed services in comparison to the others in the
rank. An example of the method utilization on one selected use case is given as well.

Key words: Software quality, software services, software development, improvement.

INTRODUCTION

Higher complexity of software solution brings higher
probability of making errors. Making errors in each step of
software development life cycle is absolutely expectable.
On the other side, testing can never establish correctness
of the software. It can only make comparison between the
state and behavior of the product against set principles by
which someone can recognize a problem. These
expectations vary from similar product influences,
expected purpose, relevant standards, to user “feelings”
that software bugs cost the US economy $59.5 billion
annually, and that more than a third of that cost is
associated with bad testing performed (Hindi, 2002). That

*Corresponding author. E-mail: rado@uns.ac.rs. Tel: +381 21

4852152.

is why, it is so important to develop good test cases, if
possible automate them, and run them as often as
possible.

The future cost of implemented business software pro-
duct depends also on the level of maintenance needed to
utilize the product in its life cycle. Besides bugs fixing,
there is also need to change existing and add new
functionalities in the software. The rapid changes in the
business are primary cause of the functional changes;
however, there are also changes that are added at the
later phase only because there was lack of good
understanding or communications in the project pre-
paration phase at the very beginning. Sometimes those
omitted requirements if proved later to be of the key
importance for the system in production could cause
disastrous outcomes to the project itself.

This would also emphasize importance of the selected

software process utilization during development phase
and the methodology applied in project management.

The problem is in the fact that by the time that required
changes get absorbed and defined within the business,
the old software system (service) is still operating with the
previous state that might not be desirable for the
business any more.

To stay competitive, it is very important to constantly

improve the software services quality and be able to give

an answer to new needs faster (to be more agile).

BACKGROUND - THE QUALITY PERSPECTIVES

There are two main perspectives on quality. The first is
an inner product quality that is related to operability of the
product that is limited to the defect rate and reliability
(normally represented with small “q”), and the over all
quality (big “Q”) that is defined by product quality (q),
process quality and customer satisfaction. Software
quality at first level is linked to lack of “bugs”, and at the
second to defect rate (e.g. number of defects per million
or thousand lines of code (MLOC or KLOC), per
functional unit, etc.), reliability (e.g. number of failures per
N hours of operations, mean time to failure, probability of
failure-free operations in a specific time), and customer
satisfaction (normal or dissatisfied) (Kan, 2003).

More than 15% of software defects are related to
requirements errors (Jones, 1992). It is also well known
that the errors occurred and not detected in earlier
phases of software development do contribute to higher
cost in defect fixings later on.

Customer satisfaction is influenced by time to market
criteria that have higher weight coefficient with dynamic
businesses (for example, fast changes in products
portfolios, new organization and processes due to
mergers and acquisitions, economic crises, regulation
requirements, etc). However, the software process could
significantly influence the time to market criteria.

There are principles like the quality improvement
paradigm (QIP) that defines software discipline as
evolutionary and experimental (Basil, 1994; Basili and
McGarry, 1998). This means that there is very little repe-
tition in the software development, which makes the use
of statistical control as used in manufacturing sciences
extremely hard and dubious. The developers of QIP then
take a different approach, for example, the authors of the
CMM and a number of other models that are based on
the very idea of statistical control of processes
(Humphrey, 1989).

The QIP emphasize that all project environments and
products are different – missile control software is entirely
different thing from game software – and this means that
there are certain prerequisites to experience reuse.
These prerequisites include capturing and packaging of
experiences, explanations on what kind of project and

product types they haD applied successfully (and
unsuccessfully) to, and how to tailor them to different
environments and products (Basili, 1994). The
development of reusable experiences is analogous to
developing reusable code.

There are a number of paths that one can take to get to
the point “B” from point “A”, but there is only one path that
is going to be the optimal one (Ravindra, 1993) . In the
case of the software development processes, the optimal
path selection depends on many things including the
specifics of the business environment. If the environment
does not change that often, it is more static than dynamic,
and requirements are very stable, then procedural
approach and more traditional processes can give
sustainable results, otherwise some agile process
(SCRUM, XP, ARUP, etc.) needs to be launched
(Markovi , 2005).

In the case where simultaneously a number of software
services needs to be maintained with strict SLA
obligations (Pollard, 2009), then it becomes very
important to find a way on how to efficiently control and
compare different on-going services and to approximately
predict future costs per each new service in operations.
By quickly setting defined parameters for new services,
one would choose the most appropriate process and
development environment with the available human
resources (internal and external). Basically, meeting the
quality needs for software services does include the
principles written by Dr. Deming (Deming, 1982;
Shewhart and Deming, 1986), and Total Quality
Management (TQM) practice. TQM links customer
satisfaction with the quality. TQM system is based on the
following: Customer focus, process improvements,
human side of quality and measurements and analysis
(Juran, 2001) . Researchers had used various theories
and concepts from many disciplines to explain concepts
related to process improvement frameworks. Regardless
of the particular flavors of TQM implemented, process
definition, control and improvement are always included
since it is a core TQM principle (Hackman and Wageman,
1995). The main idea behind process control is that
organizations are sets of interlinked processes and
improvement of these processes is the foundation of
performance improvement (Dean and Bowen, 1994).

The oldest model that can be seen as an improvement
action life-cycle model is the PDCA (Plan-Do-Check-Act)
model by Shewhart (1931). It was originally devised for
improving quality in manufacturing and has its foundation
in statistical quality control, that is, controlling the quality
by applying metrics on the process. There are many
variants of this basic model (for example, Bootstrap
material (Kuvaja, 1994)). Some of the process
improvements models based on PDCA are:

1. Effective change process model which is more or less

an elaboration of the PDCA-cycle, and has been

described in the "Managing the Software Process" by Watts.
S. Humphrey (Humphrey, 1989).
2. The AMI approach (Pulford et al., 1996) is essentially a
model for implementing a goal-oriented measurement
program, but since it is aimed at improvement, it can be
considered as a model for process improvement life cycle
as well. The AMI method implements the following
activities: Assess your project environment (with its
objectives and problems) to define primary goals for
measurement. The goals are then checked against the
assessment. Analyze the primary goals to derive sub-
goals and the relevant metrics. The method provides a
formal approach for the analysis, which includes a
consistency check. “Metricate” by implementing a
measurement plan and then process (including
verification) the collected raw data into measurement
data. Improve, as the participants affected by the goals
start to use the measurement data and implement
improvement actions.
3. The Pr

2
imer model had been built from the process

improvement consultancy experiences of VTT
Electronics, and had been published in Karjalainen et al.
(1996). The model draws on AMI-approach and TQM
approach, integrating the software process analysis,
modeling improvement and measurement techniques into
the TQM-based process development.
4. Iteration cycle is the process improvement cycle,
described in Culver-Lozo (1995), and has been
developed and used at AT&T. The underlying principle of
this model is that improvement starts from describing and
modeling the process. Improvement activities are planned
based on the information collected of how the model had
been enacted. The model has three steps: Process
definition, process execution, and process improvement.

5. Process improvement paradigm cycle is a process
improvement cycle developed and used at Raytheon and
has been described by Dion (1993). It is built on the
principles from Deming and Juran – that is, that a real
process improvement must follow a sequence of steps,
starting with making the process visible, repeatable and
then measurable. It also draws on Humphrey's effective
change process. The model is a three-phase cycle of
stabilization, control and change, where projects are the
focus of activities.
6. The seven-step improvement process is in a core of

continual service improvement (CSI) knowledge area of

information technology infrastructure library (ITIL v3). That

consist of the following seven steps: Definition of what

should be measured, definition of what can be measured,

data gathering (who, how, when, integrity), processing data

(frequency, format, system, accuracy), analyzing data

(relations, trends, according to plan, targets met, corrective

actions), presenting and using information, implementation

of corrective action) (Boyd, 2007).
TQM principles nicely match the latest version of ITIL

v3. ITIL v3 is promoting the need of not just alignment

(v2) with business, but integration of the IT services with

the business (Van Bon, 2007).

Service management is a set of specialized
organizational capabilities for providing value to
customers in the form of service. IT service management
(ITSM) provides that information systems support to
business is offered under contract (SLA) and its
performance is managed as a service. In that way, IT
service management promises real benefit to the
business customer and IT organizations. ITSM is an
emerging area for further study (Cater-Steel et al., 2007).
Providers of IT services can no longer afford to just focus
on technology but should also consider the quality of the
services they provide and the relationship with
customers. Continual service improvement (CSI) is the
part of the core v3 knowledge areas that is focused on
PDCA (Van Bon, 2007).

By its nature, ITSM is process-focused, shares
common ideas with the process improvement techniques.
There are various frameworks developed to assist with
the definition, assessment, reporting on and improvement
of internal processes, IT, and control in organizations (for
example, TQM, Six Sigma, Business Process
Management, CobiT, ISO 9001, Balanced Scorecard,
PMBOK, Prince 2, ISO 17799, and CMMI) (Ridley et al.,
2004). ITIL offers a body of knowledge useful for achie-
ving ISO/IEC 20000 standard requirements. There are
materials available to assist auditors including one that
maps COBIT to the ITIL framework (Grembergen, 2005).

There are materials written about a need of sharing of
domestic and specific knowledge to improve quality of
service and business operations (Harris, 2000; Choppin,
1995). There is an increasing importance of focusing on
customer-oriented culture through organization structure,
on effective communications, and feedback at all levels.
Zsidisin et al. (2000) stated that accurate and timely
communications are the cornerstone of service quality.

With ITIL implementation, IT governance includes
leadership, organizational structures and processes to
ensure that the organization’s IT sustains and extends
the organization’s strategy (Sallé, 2004). IT governance is
getting considered as an integral part of corporate
governance, and this leads to ensuring customer
satisfaction and picturing holistic nature of the business
and IT services as an integral part of the business
endeavourers.

MATERIALS AND METHODS

LSP in PDCA cycle

The quality of software could be estimated from different

perspectives. The holistic picture of software that is used as a

service to a specific organization could be better obtained if the
question of quality is also viewed trough comparison process with
other software services for the given users’ domains. The estimated
relative quality of the service would help in understanding what the
current “best practices” in organization are. That is the value that is
perceived by users (clients) in relation to the same rank of the
portfolio of services from the given services catalogue. Basically,
the goal would be to maximize the business value that is driven
from the invested efforts in the services development (Van Bon,
2007) and maintenance.

The study proposes the method based on LSP (Dujmovi and
Nagashima, 2006) that consists of the following steps in PDCA style
repeating cycles. These PDCA cycles are mapped into repeating
drill-in kaizen (Imai, 1997) cycles from comparison to decision
actions that lead to overall IT services quality improvements. These
steps are:

1. Identification of the group of the services that belong to the same
portfolio category in the service catalog (the same service rank). To
fulfill this step it is very important to understand the business and
architecture side of the services. The catalogue is based on the
business view of provided services, and the architecture complexity
of the services, that in the same group could vary from mainframe
to Web services.
2. Utilizing LSP method for comparison proposes. This method is
based on hierarchical decomposition of criteria (top-down
decomposition) till elementary criteria get reached at each level of
decomposition. The study would not recommend for the software
services comparison to have more than four levels of hierarchy
identified for this case, because the dipper drilling down in
identifying lower elementary criteria would lead to the “gold plating”
mode (no significant differences calculated for comparison
proposes). This is just the recommendation for one repeating cycle.
However, this does not mean that further research at the lower level
is not desirable. On contrary, if there is a business need to
understand inner design, implementation, and detail process
attributes that make a difference among services in the same
service rank, that the previous comparison cycle has not been able
to give, then we would recommend taking another cycle, and repeat
them until the clear understanding from the result can be reached.

The formula to calculate the estimates of each defined criteria

(Dujmovi , 2006) is given as:

E   i
k
1 wi ei

r
 1 /

r
 , 0  wi  1, i

k
1 wi  1 ,

ei  0,1, E  0,1, k  2 (1)

Where coefficient “w” represents weight coefficient associated with
comparative importance of each estimated elementary preference
that belongs to the same hierarchal group preference. The “r”
represents the correlation function that is going to be applied on the
specific level. The values of “r” are defined on the basis of the
expectation from the combined influence on the estimated
preference at the group level (for example, synergy effects). The
values for r vary from full conjunction (C, r=-) to full disjunction (D,
r=+). The arithmetic mean (AM) is given at r=1 (Dujmovi and Bai,
2006).

3. Identification of the comparison criteria. Typical parameters that
get evaluated in comparing the quality of software are: Capability,
usability, performance, reliability, “installability”, maintainability,
documentation, and availability (Kan, 2003). However, as explained
above, at each new cycle new set of the group criteria might be

identified (for example, drilling in changeability a number of
parameters can be indetified such as cohesion and coupling levels,
design and implementation patterns, component’s encapsulation
level, code readability, standards utilization in design and
implementation, etc.).
4. Calculating preferences for each service in the selected portfolio
rank. For LSP method this means choosing the right coefficients
(r,w) for each group level end make calculation till the main
preference estimate get reached for the given cycle.
5. Analyzing the results and selecting the best services in the
group. This means that certain upper control level (UCL) limit (Ott,
2005) defined for the services in the same service group needs to
be “significantly” passed with the best performers (for example by
10% - if 10% means significant difference in the observed service
group). The best and worst performers would be analyzed in further
details to understand what would be the main contribution to the
success, or failure respectively (for example, architecture,
development process, people selection, project management
methodology, etc.).
6. If it is possible to make clear conclusion and recommendation for
service improvements, than conducting services improvements

based on the knowledge acquired in the previous step, if not, then
continuing with another drill-in cycle.

METHOD UTILIZATION EXAMPLE

The proposed method implementation is going to be
demonstrated by following a case study of the selected
company that would like to build better awareness of the
quality of its IT services, and based on that awareness to
improve the overall quality of all services in the services
catalogue.

The catalogue of services that was taken from the
selected company was firstly analyzed from the business
value perspective added by each service from the
catalogue. The logical grouping has been made to create
different services categories (services ranks) bearing in
mind business perspective of the catalogue. The
company’s management was especially interested in
understanding the difference in quality of the core appli-
cation software services built on different architecture
basis, with different teams, and in some cases with partial
procurement decisions made for the development tasks.
That is why, only those services from the service
catalogue that support core business that were built in
house or with consulting help had been selected (no third
party software, nor the systems software).

The services grouping as a first step of identification

were done based on the identified service class’s group

attributes:

1. Technology group – represented by technical attributes
that would better describe the influence of applied
technology tools on service development and operations.
2. Complexity group – represents the observed level of

complexity in creating solution. More tiers in the solution
implementation would in most cases represent more

complexity in operating that service.

3. Development process group – represents the
possibility to lever the influence on the service by applied
development process. Some development processes
could create very stable service, but have a problem with
low level of flexibility to change.
4. Development team group – team experiences, the
skills, team cohesion, in house and outsourcing options
do affect the ability for quality maintenance for specific
service.
5. Business support domain group – is related to end
user profile, the number, the location, and a type of
application that is being used (for example, OLTP,
reports, etc). In this case study we identified the following
values domains for the above group attributes:

a. For technology dependent group attribute TDi, the

study identify two-tier, three-tier and four- tier client server
architecture, Web platform on Open Source, Web
platform on proprietary (Oracle) platform, and

programming languages: Java, VB6, C++, and Oracle
PL/SQL.
b. Complexity group attribute Ci, took high, medium and
low values.

6. Different services were developed using different

development process DPi. These processes in this case
were: Procedural SSA (Structured Systems Analysis),
RUP, Agile (Scrum), Hybrid.

7. Development team group TDi were different for
different services. The services were developed and
maintained internally (IH), externally (OH), and mixed
teams (MX).
8. Business support domain group BDi was described by
values (Yes/No) for the following attributes front-end
support, back-end support, internal user’s domain,
external user’s domain, OLTP, reporting facilities.

Based on these group attributes definition, each instance

of service class Si from the catalog was assigned values
as the following:

Si  (TDi ,Ci , DPi , DTi , BDi) , (2)

where:

TDi  (td1 , td 2 , td3) , where td1  2T ,3T ,4T,

td2 WO,WP, DC, and td3  J ,VB,C, D

Ci  (c) , where c HI, MI, LO

DPi  (dp) , where dp S, R, A, H

DTi  (dt) , where dt IH,OH, MX
BDi  (bd1 , bd 2 , bd3) , where

bd1 FE, BE, bd2 OL, RE, and bd3  IN, EX 

The domains’ values are:

TD: 2T – Two-Tier, 3T – Three-Tier, 4T – Four-Tier, WO
– Web - Open Source, WP – Web - Proprietary, DC –
Desktop Client (Fat Client), J – Java, VB – Visual Basic,
C – C++, D – DotNet;
C: HI – High, MI – Medium, LO – Low;
DP: S – SSA, R – RUP, A – Agility, H – Hybrid;
DT: IH – In-House, OH – Outhouse, MX – Mixed;
BD: FE – Front end, BE – Back end, OL – OLTP, RE –

Reports, IN – Internal users, EX – External users.

This ’updated’ services list is then rearranged by grouping
similar services based on the complexity level and
business support domain attributes. For the proposes of
this case where management wanted to get better
understanding on the quality obtained by implementing
different processes, different teams (IH, OH, MX) and
different architecture (Java, VB, etc.) the study decided to
make grouping based on complexity and business
domain service attributes and in particular FE/BE (Front
End/Back End) and OLTP/RE (On Line Transaction
Processing/Reporting). It means that grouping of the
services was done based on the following:

Si (Ci , BDi (BD1 , BD2))  S j (C j , BD j (BD1 , BD2)) (3)

The service class attributes value assignments for each
service instance in the service catalogue and grouping
into the S (H,FE,OL) class rank is shown in Table 2.
All the services in the same service group were then
compared. The selected criteria for comparison are
based on the hierarchical decomposition till elementary
criteria had been reached. In this case, the study used
only first and second level of the hierarchical
decomposition (Table 1)
The study used the following values for weight

coefficients at the first hierarchical level:

w1 = w2 = 0.20

w3 = w4 = 0.15

w5 = w6 = 0.10

w7 = w8 = 0.05

These values were defined based on the specific
preferences requirement at given organization.

In defining the weight coefficient values, it would be
advisable to have a team of internal and external
consultants who would create more objective metrics for
the specific use case scenario.

The maintainability and reliability group preferences are
dominantly estimated by detail analysis of the ticket’s
type, number, and resolution patterns.

The study suggest that the proposed method could be

used to create better awareness of the quality that is

Table 1. Hierarchical decomposition.

P1= Maintainability P11 = Changeability

 P12 = Stability

 P13 = Testability

P2 = Documentation
P3 = Performance P31 = Processing time

 P32 = Throughput

 P33 = Resource consumption

P4= Reliability P41 = Maturity

 P42 = Fault tolerance

 P43 = Recoverability

P5 = Usability P51 = Understandability

 P52 = “Learnability”

 P53 = Operability

P6 = Capability
P7 = “Installability”

P8 = Availability

Table 2. Identified attributes of service class instances grouped in the same rank.

 Service code Product ID TD C (H/M/L) DP DT BD

 NO00301 P05-19 2T, DC, VB H R IH FE, OL, IN

 ZO00102 P06-06 3T, DC, VB H R IH FE, OL, IN

 ZS00100 P05-21/P08-04-8 3T, DC, VB/3T, WO, J H A MX FE, OL, EX

 OS00103 P05-08 3T, WO, J H M MX FE, OL, IN

 NO00102 P05-24 3T, DC, VB H R IH FE, OL, IN

 NO00101 P05-23 3T, DC, VB H R IH FE, OL, IN

 ZS00102 P05-20 3T, DC, VB H R IH FE, OL, IN

 NO00105 P05-26 3T, DC, VB H R IH FE, OL, IN

 NO00100 P05-00 3T, DC, VB H R IH FE, OL, IN

 OS00105 P05-06 2T, DC, VB H S IH FE, OL, IN

 ZS00101 P06-08 3T, DC, VB H S IH FE, OL, IN

 ZO00100 P05-100 3T, DC, VB H S IH FE, OL, IN

 NO00503 P08-04-1 3T, WO, J H A OH FE, OL, IN

 NO00800 P07-12 3T, WO, J H A IH FE, OL, IN

 NO00106 P05-25 3T, DC, VB H R IH FE, OL, IN

 NO00103 P05-35 3T, DC, VB H R IH FE, OL, IN

given with each service during the specified time period.
However, the length of the period would not have the
same meaning for different services placed for different
users’ domains. For example, for the Web services, at the
beginning, the service would be less known (Menascé,
1998) and small numbers of tickets would be initially
triggered. In later phase with exponential growth

of service users the situation could be rapidly changed.
On the other side, internal service created for the limited
and small number of the users that support their core
operations would have a different ticket occurrence curve.

To get closer approximation of the quality of the service

we would suggest defining a measurement period that is

Table 3. Number of ticket received per type of incident/request.

 2006 2007 2008 2009

 I II III IV I II III IV I II III IV I II

ADD 1 0 2 1 3 3 1 0 2 2 1 3 1 0

MAINT 4 20 12 6 5 8 6 6 3 22 15 14 3 7

BCH 1 2 3 0 6 3 4 5 8 15 7 12 15 10

TOTAL 6 22 15 7 14 14 11 11 13 39 23 29 19 17

Table 4. Time to resolution per type of incident/request.

 2006 2007 2008 2009

 I II III IV I II III IV I II III IV I II

 ADD 24 0 38 128 80.75 112 40 0 64 65 47 547 235 0

 MAINT 6 114.26 38 128 80.75 112 40 0 64 65 47 547 235 0

 BCH 30 181 4.75 0 23.5 35 42.5 210 213.58 64 72.5 337 82 172
 Total 60 295.26 160.75 142.92 499.75 219.5 152.5 273 282.58 1085.5 172 954.5 319.75 225

as long as possible (for example, one year) with
all data collected during that time (tickets that had
been received). In the example bellow (just for an
illustration of the importance of ticket data
collection), one service class instance is given that
has been in operations for more than three years
(Tables 3 to 6, Figures 1 and 2).

The finer granulation on MAINT type of
incident/request in our case led to identification of
the following lower level maintenance types:
Defect (BUG), information request (INF),
correction (CORR, not bug related action – small
correction of the way how application work,
normally lowest level of priority), parameters/rights
adjustments (ADJ).Based on all these data
collected, it is possible to estimate the quality of
services in operations. The study suggest marks
from 1 to 5, where 5 is the highest mark (Table 6).
The marks were used in LSP calculations

(mark 5 could give an estimate value for INF
attribute of 1, mark 2 would give 0.2 value of
estimate for CORR attribute in maintenance group
attribute, etc.), until the final estimate had been
reached for each instance of the service in the
same service rank (in this case it is obvious that
this service has a serious quality issue, but good
documentation and training for end users (INF
high mark indicator).

AS shown in Table 7, the final estimates and
calculations are given for the specific portfolio
class of services defined in the service catalogue
(service rank S(H,FE,OL)

The classification of the results of the service’s
preference evaluation could be then further
analyzed by grouping them in a few predefined
cate-gories for each services rank. In the use
case, the study used three different categories,
from category marked with C (the lowest) to A (the

highest). The marks assignments is based on the
prior calculations of the average rank performance

preference (Si (AVG) = 0.855) and “adjusted” utili-

zation of UCL (upper control limit) and LCL (lower
control limit) for that rank (in the case, the study
defined +/- 5% control limits around the average,
UCL = 0.898 and LCL = 0.812). However, by
definition (Ott 2005) the calculation of three
standard deviations (3) would give UCL = 1.033
and LCL = 0.677, and that would mean that all
data points in this case are within quality control
limits. That is the reason why the study “adjusted”
the UCL and LCL values in order to make
improvement in services (bring the average
service estimate value up). All the service above
and under the UCL are the primary candidates for
analysis for the overall rank improvements
actions.

To better illustrate results for the service rank S

Table 5. Service instance detail maintenance data.

Incident type
 2006 2007 2008

I II III IV I II III IV I II III IV SUM

 # 1 12 1 2 1 4 0 2 1 13 3 3 43

BUG Hours 0.5 83.67 4 13 0.5 55 0 57 5 132.5 22 23.5 396.67

 # 1 2 1 2 0 1 1 3 0 3 4 2 20

INF Hours 0.5 0.75 0.5 0.75 0 0.5 1 4 0 3 3 2 16

 # 2 6 4 1 2 3 5 1 0 4 7 7 42

CORR Hours 5 29.84 5.5 0.67 83 17 69 2 0 23 26 9 270.01

 # 0 0 4 0 2 0 0 0 0 2 1 2 11

ADJ Hours 0 0 108 0 312 0 0 0 0 798 1.5 36 1255.5

Total # 3 20 10 5 5 8 6 6 1 22 15 14 116

MAINT Hours 6 114.26 118 14.42 395.5 72.5 70 63 5 956.5 52.5 70.5 1938.18

Table 6. Service class instance estimate measurements based on the time to resolution.

 Request type BUG INF CORR ADJ MAINT

 Ticket # 43 20 42 11 116

 Time spent (t) 396.67 16 270.01 1255.5 1938.18

 Rank average (ri) ri ,b = 5.68 ri,i = 1.25 ri,c = 3.05 ri,a = 17.9 ri = 5.81

Service average (St)

9.22 0.8 6.43 114.14 16.71

M = St : ri

 1.62 0.64 2.11 6.38 2.88

 Mark 3 5 2 1 1

 50

 40

30 ADD

MAINT

Ti
ck

et

20

BCH

10

 TOTAL

 0

 -10 6-I 6-II 6- 6- 7-I 7-II 7- 7- 8-I 8-II 8- 8- 9-I 9-II

 III IV III IV III IV

Time Period

Figure 1. Graphical presentation of the number of ticket received per incident/request type where ADD is
an additional functionalities request, MAINT is a maintenance request (for example, bug fixing), and BCH
is a request for additional batch process invocation (out of scheduled Bach job utilizations for the given

instance of service class).

to
R

es
ol

ut
i

on

(h
ou

r

s)
 1200

1000
ADD

 800

MAINT

 600

 400
BCH

 200

e
 TOTAL

 0

T
im

 -200 6-I 6-II 6- 6- 7-I 7-II 7- 7- 8-I 8-II 8- 8- 9-I 9-II

 III IV III IV III IV

 Time Period

Figure 2. Graphical illustration of time spent on tickets resolution.

Table 7. Final estimates calculations for one service rank based on LSP.

 Service code Product ID TD C (H/M/L) DP DT BD LSP Estimate

 NO00301 P05-19 2T, DC, VB H R IH FE, OL, IN 0.746

 ZO00102 P06-06 3T, DC, VB H R IH FE, OL, IN 0.749

 ZS00100 P05-21 3T, DC, VB H R IN FE, OL, EX 0.791

 OS00103 P05-08 3T, WO, J H M MX FE, OL, IN 0.800

 NO00102 P05-24 3T, DC, VB H R IH FE, OL, IN 0.802

 NO00101 P05-23 3T, DC, VB H R IH FE, OL, IN 0.842

 ZS00102 P05-20 3T, DC, VB H R IH FE, OL, IN 0.858

 NO00105 P05-26 3T, DC, VB H R IH FE, OL, IN 0.864

 NO00100 P05-00 3T, DC, VB H R IH FE, OL, IN 0.875

 OS00105 P05-06 2T, DC, VB H S IH FE, OL, IN 0.885

 ZS00101 P06-08 3T, DC, VB H S IH FE, OL, IN 0.886

 ZO00100 P05-100 3T, DC, VB H S IH FE, OL, IN 0.898

 NO00503 P08-04-1 3T, WO, J H A OH FE, OL, IN 0.902

 NO00800 P07-12 3T, WO, J H A IH FE, OL, IN 0.915

 NO00106 P05-25 3T, DC, VB H R IH FE, OL, IN 0.925
 NO00103 P05-35 3T, DC, VB H R IH FE, OL, IN 0.945

(H, FE, OL), the scatter graph could be used (Figure 3).
Table 8 shows final listing of the instances of the

service class belonging to S (H, FE, OL) rank.
After selecting top performers, the common features of

the best marked services would need to be analyzed to
see whether some pattern exist that is responsible for the
excellence in the group. The interest also could be in
further analysis of the different TD and DP applied. For
example, the service instance from A group with Java
and Agile process development (e.g. NO0800), and the
services instance from B group VB and RUP (for
example, NO0105) could be in further details analyzed for
the incidents that occurred in the relatively same period of
time. The length of time (the measurement’s period) for
incidents analysis was taken by the “younger”

one in operations and mapped to the measurement time
period of the “older” one (Figure 4).

The analysis could be respectively conducted for all
representatives of the best and the worst in the service
rank to look for the patterns for improvements in all
services based on internal best practice and lessons
learned (PMI, 2008). This analysis when regularly con-
ducted would trigger improvements actions which would
positively influence future decisions in new services
development (for example, architecture to apply based on
the business domain and level of the complexity, internal
development, or outsourcing, or both, agile, or procedural
development in relation to other dimensions, etc.). If all
curves for the same business portfolio get analyzed in
parallel (as the portfolio “summary” curves), this could help

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0 5 10 15 20

Figure 3. The estimated preferences of the instances of service class

within the rank.

Table 8. The final classification on the service quality levels within the service rank.

 Service code Product ID TD C (H/M/L) DP DT BD LSP estimate Final mark

 NO00301 P05-19 2T, DC, VB H R IH FE, OL, IN 0.746 C

 ZO00102 P06-06 3T, DC, VB H R IH FE, OL, IN 0.749 C

 ZS00100 P05-21 3T, DC, VB H R IN FE, OL, EX 0.791 C

 OS00103 P05-08 3T, WO, J H M MX FE, OL, IN 0.800 C

 NO00102 P05-24 3T, DC, VB H R IH FE, OL, IN 0.802 C

 NO00101 P05-23 3T, DC, VB H R IH FE, OL, IN 0.842 B

 ZS00102 P05-20 3T, DC, VB H R IH FE, OL, IN 0.858 B

 NO00105 P05-26 3T, DC, VB H R IH FE, OL, IN 0.864 B

 NO00100 P05-00 3T, DC, VB H R IH FE, OL, IN 0.875 B

 OS00105 P05-06 2T, DC, VB H S IH FE, OL, IN 0.885 B

 ZS00101 P06-08 3T, DC, VB H S IH FE, OL, IN 0.886 B

 ZO00100 P05-100 3T, DC, VB H S IH FE, OL, IN 0.898 B

 NO00503 P08-04-1 3T, WO, J H A OH FE, OL, IN 0.902 A

 NO00800 P07-12 3T, WO, J H A IH FE, OL, IN 0.915 A

 NO00106 P05-25 3T, DC, VB H R IH FE, OL, IN 0.925 A

 NO00103 P05-35 3T, DC, VB H R IH FE, OL, IN 0.945 A

 20

#
 15

In
c

id
e
n

ts

10

5

0

 I I
V

I
IX

I
III

 -5 II I
X

 V X

Month in Operations

NO00105 (P05-26)
NO00800 (P07-12)

Figure 4. The comparative view on reported incidents in two services from the same rank marked as

A (N000800) and B (N000105) for overall quality estimate.

help in better estimation and planning for HR
consumption on maintenance tasks for the given portfolio
in the future. If there is significant issue with projects’
schedule performance indexes (SPI) (Wysocki, 2006) on
the given portfolio, the portfolio “summary” curve could
help in understanding what the root causes of these
issues are.

Organizations that had introduced project or program
management offices (PMO) (Rad, 2002) and that need to
improve master plan execution could benefit from this
analysis as well. The comparison of the quality and
efficiency of the software development teams that work
together on achieving the master plan targets would help
better utilize resource allocations on different projects and
tasks. This is especially of interest when the optimum
level of outsourcing in development, needs to be mixed
with internal development work. The motivations for
outsourcing are evolving from a primary focus on cost
reduction to an emerging emphasis on improving
business performance (McFarlan, 1995; Venkatraman
1997; Nevo, 2007).

The cycled nature in the process of continuous
improvements in services would help increasing

capability and maturity levels (Chrissis, 2004) of
organizations by utilizing this method as an optimizing

process that is quantitatively managed.

Conclusions

The study had shown that LSP method could be used in
supporting continual quality improvements (CSI) in IT
services. CSI is one of the core ITIL v3 knowledge areas
that focus on PDCA processes. In the paper, the quality
management PDCA cycles has been triggered by results
of analysis in LSP utilization on the selected elements of
the services in the given group. The cycled drilling-in
comparison for related services would be performed until
the objective gets met. The related services are those
services that belong to the same group (rank).

The study stressed out that the operational behavior of
the services in time through type and number of tickets
received together with a time needed for their resolution,
needs to be continuously analyzed for any signals in
trends. The comparison within the same service rank (for
example, business domain group at the same complexity
level) could give better – holistic view on the particular
service of interest.

The method implementation process starts with

definition of the service class (Si). In the paper, Si artifact

is defined and proposal for the service class attributes is
given as well. The first step relays on the appropriate
grouping of the services in the service catalog. This
grouping is based on the objective (the goal) that needs
to be accomplished with the comparison procedure.

The second, the third and the fourth steps are performed

based on LSP method for comparison at the same
hierarchical preferences group level. The proposal for the
hierarchical grouping and comparison criteria definition at
each hierarchical level for the IT software services is
given as well.

The results of estimates for each services in the service
class is analyzed in the fifth step, where the average, un-
der, and above the average performance is categorized
for further use.

The further analysis is conducted in the last step after
which the final result with recommendation for the
improvements in the services would be given or/and the
next more detail cycle would take a place until the
recommendation “instance” for the improvement can be
reached.

Through the case study, the method is explained.
Because of particular business need in values were
grouped, this case study, the services is based on the
complexity and business domain attributes’

The detail description for the maintainability and
reliability criteria for service operations is explained
though illustrations on the received tickets and their
resolutions in the specified period of time. These data
was used in detail calculation of the preferences, to
obtain more precise estimate for the maintainability and
reliability criteria.

Further research could be focused on studying
requests’ curves of one rank of services. If the curve get
sudden jump with introduction of the new service, that
could be signal of interdependences in the services and
might trigger further architectural dependences of these
services in the future. The LSP method utilization in
services improvement would positively influence IT
capability and maturity of the organization.

REFERENCES

Basili V, McGarry F (1998). The Experience Factory: How to Build and

Run One, Tutorial TF01, 20th International Conference on Software
Engineering (ICSE'98), Kyoto, Japan.

Boyd R (2007). Understanding ITIL key process relationships.
Computer Economics. pp. 1-3.

Cater-Steel AP, McBride N (2007). IT Service Management
Improvement – an Actor Network Perspective, European Conference
on Information Systems, St Gallen, Switzerland.

Choppin J (1995). Total quality management – what isn't it?, Manag.
Serv. Qual., 5(1): 47-49.

Culver-Lozo K (1995). Software Process Iteration on Large Projects:
Challenges, Strategies and Experiences. Software Process Improv.
Pract., 1: 35-45.

Dean JW, Bowen DE (1994). Management theory and total quality:
improving research and practice through theory development, Acad.
Manage. Rev., 19(3): 392-418.

Deming E (1986). Out of the crisis: quality, productivity and competitive
position, Cambridge University Press, Cambridge.

Dion R (1993). Process Improvement and the Corporate Balance Sheet.
IEEE Software, July, pp. 28-35.

Dujmovi JJ, Bai H (2006). Evaluation and Comparison of Search

Engines Using the LSP Method. ComSIS, 3(2): 31-56.

Dujmovi JJ, Nagashima H (2006). LSP method and its use for

evaluation of Java IDEs, Int. J. Approx. Reason., 41(1): 3-22.
Grembergen VW, Haes DS, Moons J (2005). Linking Business Goals to

IT Goals and COBIT Processes. Info. Syst. Control J., 4: 18-21.
Hackman JR, Wageman R (1995). Total quality management:

Empirical, conceptual, and practical issues. Admin. Sci. Q., 40(2):
309-342.

Harris M, Harrington J (2000). Service quality in the knowledge age –
huge opportunities for the twenty-first century. Measuring Bus.
Excellence, 4(4): 31-36.

Hindi S (2002). The Blue Screen of Death and Other Deadly Bugs.
Comput. Secur., 21(6): 491-496.

Humphrey W (1989). Managing the Software Process, Addison-Wesley,
Massachusetts.

Imai M (1997). Gemba Kaizen: A Common Sense, Low-cost Approach
to Management McGraw-Hill.

Jones C (1992). Critical Problems in Software Measurement, Burlington,
Mass.: Software Productivity Research. pp 72-77.

Juran J (2001). Total Quality Management. McGraw-Hill.
Kan SE (2003). Metrics and Models in Software Quality Engineering.

Addison-Wesley, Second Edition.
Karjalainen J, Mäkäräinen M, Komi-Sirviö S, Seppänen V (1996).

Practical process improvement for embedded real-time software.
Qual. Eng., 8(4): 565-573.

Kuvaja P, Similä J, Krzanik L, Bicego A, Saukkonen S, Koch G (1994).
Software Process Assessment and Improvement - The Bootstrap
Approach, Blackwell Publishers, Oxford.

Markovi V (2005). Building IT Maturity in Fast Chaning Business
Environment, First Edition, DP Budu nost.

McFarlan W, Nolan R (1995). How to Manage an IT Outsourcing
Strategic Alliance, winter. Sloan Manage. Rev., 36: 9-23.

Menascé DA, Almeida VAF (1998). Capacity Planning for Web
Performance: metrics, models, and methods, Prentice Hall.

Nevo S, Wade MR, Cook WD (2007). An examination of the trade-off

between internal and external IT capabilities, J. Strategic Info. Syst.,

16: 5-23.

Ott ER, Schilling EG, Neubauer DV (2005). Process Quality Control:

Troubleshooting and Interpretation of Data, 4
th

 Edition, ASQ.
PMI (2008). Project Management Body of Knowledge (PMBOK Guide),

4
th

 Edition, PMI.
Pollard C, Cater-Steel A (2009). Justifications, Strategies, and Critical

Success Factors in Successful ITIL Implementations in U.S. and
Australian Companies: An Exploratory Study, Info. Systems Manage.,
26(2):164-175.

Pulford K, Kuntzmann-Combelles A, Shirlaw S (1996). A quantitative
approach to Software Management: The AMI Handbook, Addison-
Wesley, Wokingham, England.

Rad PF, Levin G (2002). The Advanced Program Management Office: A
Comprehensive Look at Function and Implementation, CRC press.

Ravindra KA, Magnanti TL, Orlin JB (1993). Network Flows: Theory,
Algorithms and Applications. Prentice Hall.

Ridley G, Young J, Carroll P (2004). COBIT and Its Utilization: A
Framework from the Literature, 37th Annual Hawaii International
Conference on System Sciences (HICSS'04).

Sallé M (2004). IT Service Management and IT Governance: review,
comparative analysis and their impact on utility computing, Hewlett-
Packard Company.

Schwaber K, Beedle M (2002). Agile Software Development with
SCRUM, First Edition, Prentice Hall.

Shewhart WA, Deming EW (1986). Statistical Method from the
Viewpoint of Quality Control, Dover Publications.

Van Bon J (2007). Foundation of IT Services Management Based on
ITIL v3, itSMF International.

Venkatraman N (1997). Beyond outsourcing: managing IT resources as
a value center. Sloan Manage. Rev., 38(3): 51-64.

Wysocki RK (2006). Effective Project Management, 4
th

 Edition, Wiley.
Zsidisin GA, Jun M, Adams LL (2000). Relationship between

information technology and service quality in the dual - the direction

supply chain: a case study approach", Int. J. Serv. Ind. Manage.,

11(4): 312-328.

