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This paper investigates a supply chain design problem where distribution centers are subject to random disruptions. 
As a result of disruptions, one or more of the distribution centers may fail to serve the customers. It is assumed that 
customers have random demands; thus, each distribution center maintains some amount of safety stocks in order to 
provide suitable service level for the customers it serves. The proposed model for this study is formulated as a 
nonlinear integer programming to minimize the expected total cost which includes costs of location, inventory, 
transportation and lost sales. The model simultaneously determines the location of distribution centers and the 
allocation of customers to distribution centers. In order to solve the resulted mathematical model, an efficient solution 
approach based on genetic algorithm is developed. Finally, computational results for several instances of the problem 
are presented to demonstrate the effectiveness of the proposed algorithm. 
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INTRODUCTION 

 
Traditional supply chain design models typically assume 
that facilities will never fail. However, in the real world 
cases, facilities are always vulnerable to disruptions of 
various sorts due to natural disasters, strikes, changes of 
ownership and other factors (Snyder and Daskin, 2005). 
There are many evidences that facility disruptions can be 
costly. For instance, a research by Hendricks and Singhal 
(2003) examines stock market reactions when firms 
publicly announce that they are experiencing supply 
chain disruptions. Results of the study of 519 supply 
chain problem announcements reveal that stock market 
reactions reduced shareholder value by 10.28%. Also, 
delivery failure of two critical parts resulted in over $2.6 
billion loss for the Boeing (Radjou, 2002). Both Hurricane 
Katrina and Rita caused shutdowns of numerous facilities 
and consequently significant economic losses 
(Barrionuevo and Deutsch, 2005). These examples and 
other events demonstrate crucial need to plan for facility 
disruptions in designing supply chain systems so that 
they perform well even after disruptions.  
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This paper presents an integrated supply chain design 
model, which considers impacts of the facility disruptions 
on both the strategic facility location and tactical inventory 
decisions. Specifically, we study a supply chain system 
which comprised a single supplier, distribution centers 
(DCs) and customers. It is assumed that customers have 
uncorrelated probabilistic demands with normal 
probability distribution. In this supply chain system, a 
supplier ships one type of product to customers in order 
to satisfy their demands. DCs function as the direct 
intermediary between the supplier and customers for the 
shipment of the product, that is, DCs combine the orders 
from different customers and then order from the supplier. 
Each DC retains safety stocks in order to ensure pre-
specific level of service.  

A key problem is that DCs are always subject to 
disruptions. As a result, each DC, at any time, may 
become unavailable and fail to serve the customers. In 
order to overcome this problem, we adopt the strategy 
that each customer is assigned to multiple DCs: a primary 
DC and a number of backup DCs. A primary DC, 
assigned to a customer, is responsible for satisfying all 
the demands of the customer in normal circumstances. 
As soon as the primary DC becomes unavailable, the first 



 
 
 

 

backup DC which is allocated to the customer provides its 
demands. If the first backup DC is disrupted, then the 
second backup DC will serve the customer's demands, 
and so on. If all of the DCs assigned to the customer are 
disrupted, or when the total cost of satisfying the 
customer's demands becomes higher than lost sales cost, 
the customer is not served. In this case, the system incurs 
lost sales cost.  

The model determines the location of DCs and 
assignment of customers to DCs in order to minimize the 
expected total cost which includes: (1) the fixed cost to 
locate DCs, (2) the working inventory cost at the DCs, (3) 
the safety stock cost at the located DCs, (4) the shipment 
cost from DCs to customers, and (5) the lost sales cost. 

The remainder of this paper is organized as follows. 
Some relevant models in the literature are discussed, 
then, the integrated supply chain design model for the 
problem is proposed. Also, an efficient solution approach 
for the mathematical model is developed. Finally, the 
related computational results along with conclusions are 
provided. 
 

 

Literature review 

 

In the recent years, researchers have focused on the 
integrated models in which location and nonlinear 
inventory costs are included in the same model. For 
instance, Erlebacher and Meller (2000) provide a joint 
location inventory model with complicated nonlinear 
objective function. They applied a continuous 
approximation along with some heuristics techniques to 
solve the model. Shen (2000), Shen et al. (2003) and 
Daskin et al. (2002) introduce a location model with risk 
pooling (LMRP) that incorporates inventory decisions into 
the location model. Shen (2000) and Shen et al. (2003) 
use column generation, while Daskin et al. (2002) 
presents Lagrangian relaxation to solve LMRP. Another 
efficient approach to solve the LMRP is presented by Shu 
et al. (2005).  

Shen and Daskin (2005) extend the LMRP to include a 
customer service element and propose useful techniques 
for evaluation of cost/service trade- offs. A profit-
maximizing supply chain network design model is studied 
by Shen (2006), where DCs can charge different prices. 
Ozsen et al. (2008) develop LMRP when each DC has 
limited capacity. Shen and Qi (2007) study an integrated 
supply chain design model that contains location, 
inventory and routing decisions; in fact, they add routing 
decisions to the LMRP framework. Ozsen et al. (2009) 
analyzed the effect of multi-sourcing by introducing a 
capacitated location- inventory model that minimizes the 
sum of the fixed location costs, the transportation costs 
and the inventory costs.  

Snyder et al. (2007) proposed a stochastic version of 

LMRP (called SLMRP) that handles uncertainty by 

describing discrete scenarios. The goal of SLMRP is to 

 
 
 
 

 

minimize the expected system cost across identified 
scenarios. However, the authors argue on how to use 
SLMRP to solve multi-commodity and multi-period 
problems. Sourirajan et al. (2008) examined a two-stage 
supply chain with a production facility in which the 
replenishment lead time at a DC depends on the volume 
of flow through the DC. They presented a genetic 
algorithm to solve the model and imply that the proposed 
algorithm outperforms the Lagrangian relaxation 
approach. The reader referred to Shen (2007) and Melo 
et al. (2009) for a thorough review of the integrated 
supply chain design models. 

Another body of literature which is closely related to the 
present paper is the literature on facility location with 
disruptions. Snyder and Daskin (2005) examine facility 
location problems in which facilities may fail with a given 
probability. Their models minimize the weighted sum of 
two objectives: the first objective represents the cost of 
the system when no disruptions occur, while the second 
objective indicates the expected transportation cost after 
accounting for disruptions. They assume that facilities 
have equal probability of failure. Berman et al. (2007) and 
Lim et al. (2009) developed models that are similar to 
Snyder and Daskin's (2005) models, which permitted 
different facilities to have different failure probabilities.  

Cui et al. (2010) also relax the uniform failure 
probability assumption in the Snyder and Daskin's (2005) 
models using a continuum approximation model. 
However, they ignore inventory costs in their model. Qi et 
al. (2010) proposed an integrated location-inventory 
model, where the supplier and retailers are disrupted 
randomly. Their model assumes that the demands are 
deterministic and the lead time for order processing is 
zero.  

Related models are studied by Church and Scaparra 
(2007) and Scaparra and Church (2008). They formulated 
problem in places where existed facilities can be 
protected against disruptions by fortification resources. 
Since fortification resources are limited in their problem, 
protecting all the facilities is not possible. They formulate 
models that determine what facilities must be protected 
so that the impact of interdiction on the remaining system 
operation is minimized. Snyder et al. (2006) present a 
tutorial reviewing a broad range of models for designing 
supply chains resilient to disruptions. Snyder and Daskin 
(2007) investigate models for the design of reliable facility 
location systems under a variety of risk measurements.  

The present paper differs from the earlier literature on 
facility location models with disruptions. First, the 
proposed model in this study does not ignore nonlinear 
inventory costs. Moreover, demands for customers are 
considered probabilistic instead of deterministic. This 
research, also, is different from the earlier literature on 
the joint location-inventory models. Namely, in the paper, 
we dismiss the common restrictive assumption in LMRP 
that the variance and mean of the daily demand are equal 
for each customer. Besides, there is no assumption 



 
 
 

 

that the demands of all customers must be satisfied 

necessarily. Finally, unlike the literature on joint location-

inventory models, facility disruptions are considered in 

the presented model for making it more realistic. 

 
Model formulation 

 
Here, a model for the problem is formulated. The objective is to 
minimize the expected total cost including: (1) the fixed cost to 
locate DCs, (2) the working inventory cost at the located DCs 
(containing order costs, shipment costs from supplier to DCs and 
holding costs), (3) the safety stock cost at the located DCs, (4) the 
shipment cost from located DCs to customers, and (5) the lost sale 
cost of not serving customers. The following notations will be used 
throughout the paper:  

I : set of customers indexed by i ;  
J : set of candidate DC locations indexed by  j ; 

i : mean of daily demand at customer i ;  
i2 : variance of daily demand at customer i ;  

f j : fixed cost of locating a DC at j ;  

F j : fixed cost of placing an order at j ;  

g j : fixed cost per shipment from the plant to DC j ;  
a j : per-unit shipment cost from the plant to DC j ; 
 
h : inventory holding cost per unit of product per year; 

dij : per-unit cost to ship from DC j to customer i ; 
 
: desired percentage of customers orders that are satisfied;  
: weight factor associated with the shipment cost;  
 : weight factor associated with the inventory cost; 

z  : standard normal deviate, such that P (z  z )  ;  
L : lead time from supplier to DCs, in days;  
: number of days in a year  

u i : penalty cost of not serving the costumer i, per unit of demand  
(it can be interpreted as lost sales cost or the cost of serving 
customer i by purchasing product from a competitor); 

q : probability of disruptions for each DC;  
P : number of DCs that must be located; 
 
Without loss of generality, it is assumed that sets I and J are the 

same (Daskin et al., 2002). 

 
Shipment cost 
 
Transporting the product from each DC j to each customer i that 

has linear shipment cost. Let Dij denote the expected (annual) 
 
demand of customer i which is assigned to DC j. Then, the 

shipment cost from DC j to the customers can be obtained by:  
d

ij 

D
ij (1) 

i I 

 

Lost sales cost 
 
In order to model the lost sales cost, dummy DC with index u is 

  
 
 
 

 

added to the set J ; it is assumed that the dummy DC u never faces 

disruptions. Assigning the customer i to this dummy DC, represents 

not serving the customer i . Regarding DC u , we assume that it has 

the shipment cost diu  ui to customer i  I and there is no other 

cost. 

 
Working inventory cost 
 
Here, details of the inventory policy used in the DCs are given. 
Each DC orders from the supplier using an approximation to the (Q, 
r) model with Type I service (Nahimas, 1997). This approximation 
consists of two steps. The first step determines the quantity of order 
at each DC using economic order quantity model (EOQ). In the next 
step, the reorder point at each DC is determined in the way that the 
probability of a stockout does not exceed the specified value. The 
reason why we utilize this two-step approach is that it provides a 
good approximation to the optimal order quantity and order point 
values (Zheng, 1992; Axsater, 1996).  

Following the two-step approach, first, the order quantity is 

determined. Let D j denote the expected total (annual) demand that 

is assigned to the DC j (it is obvious that D j   Dij  ) and n be the  
i I  

unknown number of orders per year. Then, the expected shipment  

size  per  shipment  from  supplier  to  DC  j  is  equal  to 
D j 

.  
n 

 

  
 

Furthermore, the annual working inventory cost at DC j (including 

order, shipment from supplier to DC j and holding cost) is obtained 

by: 
 

Fn   (g j   
a j D j 

)n  
hD j 

(2) 
 

n 
 
(2n )  

    
 

 
The first term of equation (2) is the fixed cost of placing n orders, 

while the second term indicates the cost of shipping n orders of 

D j 

size n . The last term represents the cost of holding average 
 

D j 

units of inventory per year. To determine the optimal number 
 

(2n ) 
   

of orders per year, we take the derivative of (2) in respect to n and 

set the derivative to zero: 
 

F   g j   
hD j 

 0 
 

(3) 
 

 

(2n 
2
 ) 

 
 

       
 

       
 

Solving Equation (3) for n, we obtain n  

hD j  

 

. 

 

2(F   g j ) 
  

Plugging this into (2), an annual working inventory cost can be 

calculated as follows: 
 
  

  a j D j 

 
 

 2 hD j (F   g j ) (4) 
 

Safety stock cost  
 

Each DC retains a certain amount of safety stocks to  deal  with 
  



 
 

 

 

possible stockouts during replenishment lead time. Assuming that 

lead time demand at the DC j is normally distributed with expected  

variance of V j
2

 , the needed safety stock to guarantee that the 
 

stockouts occur with a probability of or less, which is z V j
2
  .  

 
Maintaining this amount of safety stocks incurs the holding cost at  
DC j which is calculated by: 

 

hz   V j
2

 (5)  
 

 

Integrated model 
 
To determine the locations of the DCs and customers-DCs 

assignment, two sets of decision variables are defined: 
 

• X j   1, 

 

if j is selected as a DC location, and 0, if otherwise for each j J ; 

 

•Yijr 1, 

 

if customer i at level r is assigned to a DC located at j, and 0 if  
otherwi se  f or i  I ,  and  r  =  0,1,  …,  P-1.  To  clarify 
 

variables Y , note that each customer i I is assigned to multiple 
DCs at multiple levels. In fact, customer i is assigned to its primary 
DC at level 0, its first backup DC at level 1, its second backup DC at 

level 2 and its r
th

 backup DC at level r . Recall that in a normal 
circumstance, the customer is served by its primary DC. However, 
when the primary DC is disrupted, the customer is served by its first 
back up DC. If the first back up DC fails, the customer's demand is 
provided by its second back up DC and so on. Noteworthy, if 
customer i is assigned to dummy DC u at level r, there is no need to 
assign it to any other DC at upper level s (where s > r). The reason 
is that the dummy DC u never fails and does not require any 
backup DC.  

Now Dij and D j can be written in terms of decision variables: 

 
P 1  

D
ij  


 (1q )q 
r
 iYijr (6) 

r 0   
 P 1  

D j     Dij  (1q )q 
r
 iYijr (7) 

i I i I r 0  

 
Also, considering the fact that customer demands are uncorrelated, 

the expected variance of lead time demand at the DC j, V j
2

 , can 

be obtained based on the decision variables: 
 

P 1 

V j
2
  L (1 q )q 

r
 i

2
Yijr (8) 

i I r 0 
 

To explain (6) and (8), note that each customer i  I is served by 

its r
th

 back up DC (name it j) if distribution center j does not face 

disruptions (this occurs with probability 1  q ) and if all the r 

distribution centers, which were assigned to the customer i at lower 

 
 
 

 

 

levels (levels 0, 1, 2… r -1) are not disrupted (this occurs with 

probability q 
r
 ). Now the model can be formulated as follows: 

 
    

f 
 

X 
    P 1 

(1 q )q 
r
 d 

 
 Y 

  
 

Min 
 j 

   
 ij ijr 

 
 

    j      i    
 

 j J     j J i I r 0           
 

 

                  

 

 
 

          P 1 
(1 q )q 

r
 iYijr 

  
 

 2 h (F j    g j )    
 

                     
 

  j J     
p 1 

i I r 0         (9) 
 

 
                

 
 

 

                   
 

     a j(1 q )q 
r
 iYijr )      

 

  j J   i I r 0            
 

 

             

 

      
 

 hz  
  P 1           

 

 L(1 q )q 
r
  i

2
Yijr       

 

        

i I r 0 

           
 

j J                
 

subject to:                   
 

  r 1                 
 Y

ijr 
Y

ius  1
 i I , r  0, 1, 2, ..., P -1    (10) 

 

j J  s 0                 
 

Y
ijr  X j  i I , j  J , r  0, 1, 2, ..., P -1    (11) 

 

X
 j 


 

Y
JJ 0   j  J         (12) 

 

Xu  1               (13)  
 

X
 j  P 1          (14)  

 

j J                      
 

P 1                      
 Y

ijr  1  i I , j J          (15) 
 

r 0                      
 

X j {0,1}   j J         (16)  
 

Y
ijr {0,1}  i I , j J , r  0, 1, 2, ..., P -1    (17) 

  
The objective function (9) is composed of four components 
separated by parentheses. The first component represents the fixed 
cost of locating DCs, while the second part indicates the expected 
shipment cost from the DCs to customers. Recall that we added 
dummy DC u to the set J in order to take into account lost sales 
cost in the model. Considering Equations (4) and (7), it is easy to 
find that the third component represents the working inventory cost. 
Finally, the fourth part indicates safety stock cost and can be 
obtained by considering Equations (5) and (8).  

Constraints (10) stipulate that for each customer i and each level 
r , customer i should be assigned to exactly one DC at level r unless 
i was assigned to DC u at any lower level s (s < r). In other words, if 
customer i at level s is assigned to dummy DC u, it is not assigned 
to any of the DCs at any higher level r (s < r). Note that in case r = 

r 1 

0, we take Yius  0 . Constraints (11) state that customers can  
s 0  

only be assigned to candidate sites that are selected as DCs. 

Constraints (12) require that if a DC is located at j , this DC should 

serve the customer at j as a primary DC. Constraint (13) requires 

, j  J 



 
 
 

 
the dummy DC u to be located. Constraint (14) assures that the 
number of located DCs should be exactly P + 1 (this means that P 
distribution centers must be located in addition to dummy DC u). 
Constraints (15) state that a customer cannot be assigned to a 
given DC at more than one level. However, constraints (16) and 
(17) are binary constraints. 

 

Solution approach 
 
Solving the model (9) in the simplest condition 

(when q    0 , f j   a j   0 for each j J ,   1 , and  ui are 
 
extremely large for each i I ) is identical to solving the P-median 
problem which is NP-hard (Garey and Johnson, 1979). This shows 
that solving the study’s model in reasonable time is extremely hard. 
Therefore, in order to solve this complex nonlinear model, we use 
an efficient meta-heuristic method based on genetic algorithm (GA) 
similar to Zhou and Liu (2003).  

GA is a stochastic search and heuristic optimization technique 
based on the mechanism of natural genetics which has been 
successfully applied to various complex problems. It starts with an 
initial set of random solution called population. Each solution in the 
population is called chromosome and each component of 
chromosome is designated by gene. The chromosomes evolve 
through successive iterations, called generations. During each 
generation, the chromosomes are evaluated, using some measures 
of fitness.  

To create the next generation, new chromosomes (called 
offspring) are formed by crossover or mutation operators. Crossover 
operator combines two chromosomes from current generation, while 
mutation operator modifies a chromosome to form offspring. A new 
generation is created by (a) selecting some of the current 
chromosomes (called parents) and offspring based on the fitness 
values, and (b) rejecting others so as to keep the population size 
constant. However, fitter chromosomes have higher probabilities of 
being selected. After several generations, the algorithms converge 
to the best chromosome, which may represent the optimum or 
suboptimal solution to the problem (Gen and Cheng, 1996). 
 

 

Chromosome representation 
 
In the study’s GA-based approach, each chromosome is 
represented as a single dimensional array having two kinds of 
genes: location and assignment genes. If m denotes the number of 
candidate DCs, each arbitrary chromosome C can be demonstrated 
by, 
 

C  (X j ,Yir ) = 
 

( X1 , X 21 ,…, X m ,Y10 ,Y11 ,…,Y1(P 1) ,Y20 ,Y21 ,…,Y2(P 1) 

, …, 
Y

m 0 

,Y
m 1 

,…,Y
m (P 1) 

).
 

 

Where X j correspond to the location genes and Yir to the 

assignment genes.  
Associated with each candidate DC location, there is a location 

gene in the chromosome. Location genes determine where the DCs  

are located. More precisely, if X j  1 , it means that candidate site j 

is selected as a DC location, while if X j  0 , candidate location j is 

not chosen as a DC site. Note that the gene Xm 1 corresponds to 

  
  

 
 

 
dummy DC u; thus, it always takes the value 1.  

Also, associated with each customer, there are P 1assignment 

genes. Assignment genes determine the assignment of customers  

to DCs  at different levels. Specifically, Yir   j represents  that  
customer i at level r is assigned to DC j. If customer i at level r is 

assigned to a dummy DC u, the corresponding assignment gene 

takes the value of m+1; in other words, Yir  m  1 . In this case, 

the customer is not assigned to any DC at upper levels, that is,  

Y is   0 for s  r . 

 

Initialized chromosome population 
 
In the study, we initialize pop-size chromosomes from the feasible 
region randomly. In order to achieve feasible chromosomes, 

constraints (10) - (15) must be considered closely. Based on the 
model formulation in constraints (10), if customer i at level s is 
allocated to dummy DC u, it is not assigned to any DC at upper 
levels than s. 
 

Thus, if Yis   m  1 , 

 

then Y ir   0 where s < r. 

 
Constraints (11) state that customers can be only allocated to the 

located DCs, that is, 
 

if Yir   j , 

 

then X j   1. 

 
According to constraints (12), if a DC is located at j, customer j at 

level 0 is assigned to this DC. 
 

Hence, if X j   1 , 

 

thenY j 0  j . 

 
Based on constraints (13) and (14), excluding dummy DC u, the 

number of located distribution centers must be P. 

Therefore, the number of variables X j  taking the value of 1 is 
 
equal to P. According to constraints (15), if any customer i at level r 
is assigned to a given DC j, it cannot be assigned to i at any level of 

s, where s  r . 
 

Consequently, if Yir   j , 

 

then Yis   j for s  r . 
 

 
Chromosomes fitness 
 
The rank-based evaluation function is defined as the objective 
function (9) for the chromosomes. In fact, we calculate the objective 
function (9) for each of the chromosomes. Obviously, the 
chromosome which results in less value of the objective function (9) 
has the better rank. 



 
 
 

 
Crossover operator 

 
Crossover operator generates offspring chromosomes by merging 

parent chromosomes. In order to determine which of the 

chromosomesCk , k = 1, 2,…, pop-size are selected as parents for  
crossover operation, we repeat the following procedure from k = 1 

to pop-size, that is, by generating a random number r from the  

interval [0, 1], the chromosome Ck will be selected as a parent 

provided that r  Pc , where the parameter Pc is the probability  
of crossover. Then randomly, we group the selected  
parentsC1 ,C 2 ,C3 ,… to the pairs (C1 ,C 2 ), (C3 ,C 4 ),…. Without  
loss of generality, the crossover operator on each pair by (C1 ,C 2 
) will be explained.  

Crossover operator assigns each customer i at level r in offspring 
chromosome either to the DC which is allocated to customer i at  
level r in parent chromosomeC1 , or to the DC which is assigned to 

customer i at level r in parent chromosome C 2 . This occurs  
randomly and with a probability of 0.5. However, the resulted 
offspring may be infeasible. If a customer is allocated to the dummy 
DC u at any level, it is not assigned to any DC at upper levels, but if 
a customer is allocated to an unselected candidate DC site, this 
infeasibility is removed by locating the DC in that candidate location. 

If  the  number  of  located  DCs  exceeds P  1 ,  the  number  of  
selected DCs is reduced to P 1 by closing some DCs randomly. 

The customers which are allocated to these closed DCs are 
allocated randomly to one of the opened DCs. If a customer is 
assigned to a given DC in several levels, the assignments of 
customer at upper levels are modified, that is, the customer at 
upper levels is allocated to other DCs randomly in order to prevent 
from assigning the customer to a given DC at more than one level. 
 
 

 
Mutation operator 
 

Mutation operator may modify chromosomesCk , k = 1, 2 … and 

pop-size to form offspring chromosomes. In order to determine 

which of the chromosomes Ck undergo mutation, ther will be a  
repetition of the following practice from k = 1 to pop- size: by 
generating a random number r from the interval [0, 1], the 

chromosomeCk will be selected as a parent provided that r  Pm ,  
where the parameter r  Pm is the probability of mutation. Each 
selected chromosome is modified by one of the two following types 
of mutation, several times (each type of mutation occurred with a 
probability of 0.5).  

The first type of mutation generates offspring by modifying the 
assignment genes of parent chromosome. Namely, in the first type 
of mutation, two located DCs are selected randomly; let s and t 
denote them. Then, if any customer in parent chromosome is 
assigned to s, that customer will be assigned to t and if any 
customer is assigned to t, it will be allocated to s.  

The second type of mutation modifies location genes of parent 
chromosome to form offspring. Indeed, the second type of mutation 
randomly selects a location in which no DC is located; let t denotes 
it. Next, a DC is selected randomly from the located DCs and is 
named s. This type of mutation closes DC s instead of locating a 
DC at t. Then, all the customers assigned to DC s, are allocated to 
DC t. Note that this is similar to the crossover process, in that if the 
resulted offspring does not belong to a feasible region, it is repaired 
to be a feasible chromosome. 

 
 
 
 

 

COMPUTATION RESULTS AND DISCUSSION 

 

Here, the study summarizes the computational 
experience with the genetic algorithm outlined in the 
previous section. The algorithm was coded in Visual 

Basic.Net 2008 and executed on Pentium 5 computer 
with 1.00 GB RAM and 2.00 GHz CPU. 

 

Evaluating robustness of the GA 

 

The proposed genetic algorithm was tested on the 49-
node, 88-node and 150-node data sets described in 
Daskin (1995) . The 49-node data set indicates the 
capitals of the lower 48 United States plus Washington, 
DC; while the 88-node data set represents the 50 largest 
cities in the 1990 U.S. census along with the 49-node 
data set, minus duplicates; and the 150-node data set 
includes the 150 largest cities in the 1990 U.S. census.  

For all three data sets, the mean and variance of daily 
demand were obtained by dividing the population data 
given in Daskin (1995) by 1000. The per -unit cost to ship 
from DC j to customer i was set to the great-circle 
distance between i and j in Daskin (1995). Fixed costs of 
locating DCs were gained by dividing the fixed costs in 
Daskin (1995) by 10 for the 49-node problem and by 100 
for 88-node problem. For the 150-node problem, fixed 
costs of locating DCs were set to 10000. However, we  
set holding cost to be 

1, q  0.05,P  20,   0.00001,  0.001,   1, z  1.96, 

L  1,F j  10, g j   10,a j   5 for all j J and  ui   1000 for 

all i I .  
Although   1 may  seem  unrealistic,  the  difference  

between the daily and yearly parameters can be realized 

through the weights and .  
Tables 1, 2 and 3 summarize the results for the 

computational study on 49-node, 88-node and 150-node 
problems. The number of generations was set to 400 and 
was considered as a stopping rule of GA. The column 
labeled pop-size gives the number of initial feasible 
chromosomes, while Pc gives the probability of crossover 
and Pm gives the probability of mutation.  

The column marked CPU indicates the total number of 
CPU seconds required and ‘cost’ indicates the objective 
value of the solution. The last column gives the 
parameter error which shows the deviations of objective 
values (costs). This parameter can be obtained by: 
(objective value - the best objective value) / the best 
objective value, where the best objective value is the 
least value in the column marked ‘cost’.  

It follows from Tables 1 - 3 that the error for the 49-
node, 88-node and 150-node problems does not exceed 
0.000008, 0.000007 and 0.000002, respectively. These 
small values of error show that costs differ little from each 
other when different parameters are selected. We can 
also see from the three tables, when the  
parameters are varied, that the CPU time changes slightly. 



  
 
 

 
Table 1. Comparison solution of 49-node problem.  

 
  Pop-size Pc Pm CPU Cost Error 

 1 25 1 0.33 4 979078.3 0.000007 

 2 25 0.95 0.3 4 979079.8 0.000008 

 3 25 0.75 0.1 4 979075.6 0.000004 

 4 25 0.65 0.1 4 979072.1 0.000001 

 5 25 0.7 0.1 4 979077.7 0.000006 

 6 30 0.9 0.3 5 979071.5 0.000000 

 7 30 0.95 0.25 5 979074.8 0.000003 

 8 30 0.8 0.15 5 979073.3 0.000002 

 9 30 0.8 0.25 5 979077.8 0.000006 

 10 30 0.75 0.25 5 979076.8 0.000005 
 
 

 
Table 2. Comparison solution of 88-node problem.  

 
 Pop-size Pc Pm CPU Cost Error 

1 25 1 0.33 2 1174629 0.000002 

2 25 0.9 0.3 2 1174631 0.000003 

3 25 0.8 0.2 2 1174635 0.000007 

4 25 0.75 0.1 2 1174634 0.000006 

5 25 0.65 0.05 2 1174630 0.000003 

6 30 1 0.33 3 1174627 0.000000 

7 30 0.95 0.25 3 1174629 0.000002 

8 30 0.8 0.1 3 1174629 0.000002 

9 30 0.75 0.05 3 1174630 0.000003 

10 30 0.75 0.09 3 1174628 0.000001 
 
 

 
Table 3. Comparison solution of 150-node problem.  

 
  Pop-size Pc Pm CPU Cost Error 

 1 25 1 0.33 11 2000073 0.000002 

 2 25 0.95 0.3 11 2000074 0.000002 

 3 25 0.8 0.2 11 2000069 0.000000 

 4 25 0.7 0.15 11 2000071 0.000001 

 5 25 0.95 0.25 11 2000072 0.000001 

 6 30 0.9 0.3 14 2000072 0.000001 

 7 30 0.8 0.3 14 2000069 0.000000 

 8 30 0.85 0.3 14 2000070 0.000000 

 9 30 0.95 0.3 14 2000069 0.000000 
 10 30 0.85 0.25 14 2000070 0.000000 

 
 

 

slightly. Thus, the study’s genetic algorithm is robust to 

the parameter setting and effective to solve the model. 
 
 

Measuring performance of the GA 

 

Here, we compare solutions from the study’s genetic 

 
 

 

algorithm with LINGO 8.00 optimization software and 
finally compute the error. For this experiment, five data 
sets were employed: a 10-node, 15-node, 20-node, 25-
node and 30-node data set. These five data sets 
respectively consist of 10, 15, 20, 25 and 30 nodes with 
the highest demands from the 49-node data set given in 
Daskin (1995). For each data set, different values of 



 
 
 

 
Table 4. Comparing GA with Lingo 8.00 optimization software solution.  
 
 Nodes   P GA time* Lingo time* GA cost Lingo cost Error  

1 10 0.01 0.0004 5 1 1 283513.9 283504.6 0.000033  

2 10 0.01 0.0004 3 1 2 146222.7 146212.1 0.000072  

3 10 0.001 0.00001 5 1 11 283321.8 283320.9 0.000003  

4 10 0.001 0.00001 3 1 2 146023.1 146021.5 0.000011  

5 15 0.01 0.0004 8 1 7 472317.6 472296.2 0.000045  

6 15 0.01 0.0004 6 1 6 334534 334507 0.000081  

7 15 0.001 0.00001 8 1 9 472122.6 472120.1 0.000005  

8 15 0.001 0.00001 6 1 373 334324.1 334321.1 0.000009  

9 20 0.01 0.0004 12 2 25 759517.8 759511.6 0.000008  

10 20 0.01 0.0004 10 2 38 614548.9 614542.7 0.000010  

11 20 0.001 0.00001 12 2 3974 759322.5 759321.9 0.000001  

12 20 0.001 0.00001 10 2 171 614325.4 614324.9 0.000001  

13 25 0.01 0.0004 12 2 99 734867.8 734861 0.000009  

14 25 0.01 0.0004 10 2 84 592776.1 592766 0.000017  

15 25 0.001 0.00001 12 2 2764 734628.4 734626.9 0.000002  

16 25 0.001 0.00001 10 2 2072 592529.1 592527 0.000004  

17 30 0.01 0.0004 12 2 410 689514.6 689498 0.000024  

18 30 0.01 0.0004 10 2 126 556922.9 556905 0.000032  

19 30 0.001 0.00001 12 3 3850 689322.7 689321 0.000002  

20 30 0.001 0.00001 10 3 320 556723.4 556721 0.000004  
 
*Time is in second. 
 
 

 

This work can be extended in some directions; 
however, it would be interesting to model the problem 
when DCs have different or dependent probabilities of 
disruptions. Also, the model can be expanded to consider 
the possibility of disruptions for the supplier. Another 
development for this study could be adding the 
constraints on the maximum capacity of inventory at DCs 
or on the maximum demand that can be provided by a 
supplier. 
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