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The boundary compatibility condition in elasticity that was missed for more than one century has been 
formulated. The new condition has completed the Beltrami-Michell formulation in elasticity. The completed 

formulation can solve stress, displacement, and mixed boundary value problems. The boundary compatibility 
condition, which is not a rotation, should be imposed on an indeterminate boundary. The use of the new 
condition is illustrated through the solution of a mixed boundary value problem. 
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INTRODUCTION 

 
The compatibility condition on the boundary of a continuum 
was missed with the theory of elasticity since the time of St. 
Venant, about 1860. We have derived the boundary 
compatibility condition (BCC) from the stationary condition of 
the variational function of the integrated force method 
(Patnaik, 1986). The BCC has also been used to solve 
elasticity problems (Patnaik, 2005). The BCC for a two-
dimensional elastic continuum in Cartesian coordinates (x, y) 
can be written as: 
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Where x, y, and xy are the strain components, and avx 

and avy are the direction cosines of the outward normal. 
 
There are critics who still believe the BCC to be wrong. 
One critic, who is the editor of a prestigious journal, wrote 
“Your Equation (2c, which is BCC given in equation 1) 
implies that rotation is uniform on planar surfaces having 
a normal in the x-direction. This is inconsistent with the 
observed behavior of elastic bodies and is in 
contradiction with the existing analysis of elastic bodies 
that successfully predicts their behavior. In view of this 
feature of your paper which represents a general deficie 
ncy, I cannot approve it for publication in the Journal”  
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Through the medium of this discussion we attempt to 

explain the misunderstanding that lead to the erroneous 
conclusion. The compatibility condition forms the 
backbone of theoretical solid mechanics. If the 
compatibility condition were set aside, then the theory 
would degenerate into a few courses in applied 
mathematics. Yet the compatibility condition was neither 
fully understood nor utilized.  

The BCC when expressed in rotation yields the 

following condition: 
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  Where u and v are displacements, and the rotation 
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The contention of the critic that BCC implies uniform 

rotation is consistent with equation (2). However, the flaw 
pertains to the domain of application.  

The BCC is only amenable to derivation from a 

variational function. The line integral that yields the BCC 

has the following form: 
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Figure 1. Annular plate subjected to 
linear temperature distribution. 

 

 

where  is the stress function. 
 

Interpretation of the variational term is straight forward. 

Along a boundary segment, either the variation of the 

stress function is zero,  = 0, and the integral is nonzero 

or  0, and the integrand is zero, which is the BCC.  
The nonzero  implies an indeterminate boundary, 

while  = 0 indicates a determinate boundary. For a two-
dimensional elasticity problem, a boundary is one-degree 
indeterminate when all three stress components are 
induced. A boundary with prescribed displacements is an 
indeterminate boundary. A boundary is determinate when 
one stress component is zero. A boundary segment that 
can breath (or move) allowing work to be done by the 
applied traction becomes a determinate boundary. The 
BCC should be enforced only on an indeterminate 
boundary segment. The BCC must not be applied to a 
determinate boundary, and such enforcement can lead to 
flawed reasoning, as is the case with our esteemed critic. 
A three-dimensional elasticity problem can be three-
degree indeterminate because it has six stress and three 
displacement components. Its boundary can be one-, 
two-, or three-degree indeterminate. As a rule, we should 
impose boundary compatibility conditions on indetermi-
nate boundaries. One BCC for a one-degree indeterm-
inate boundary, two for a two- degree indeterminate 
boundary, and so forth. The use of the term “indeter-
minate” may not be very popular in elasticity, but authors 
have used it (Sada, 1974).  

Consider next the field compatibility condition. When 

expressed in terms of rotation, it transforms into a null 

condition: 
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It would be ridiculous to conclude the nonexistence of 
the field compatibility condition because it became a null 

condition in rotation. In other words, expressing BCC in 

rotation for an erroneous criticism is not justified. The 

 
 
 
 

 

new boundary compatibility condition has completed the 
Beltrami-Michell formulation in elasticity. The completed 
formulation can solve stress, displacement, and mixed 
boundary value problems in elasticity (Patnaik, 2005).  

Love’s (Love, 1944) inference is quoted below. Earlier, 
it was valid only for a stress boundary value problem, but 
now with the BCC, it is valid for all three class of 
boundary value problems in elasticity:  
“It is possible by taking account of these [field and 
boundary compatibility] relations to obtain a complete 
system of equations [or, Completed Beltrami Michell 
Formulation] which must be satisfied by stress 
components, and thus the way is open for a direct 
determination of stress without the intermediate steps of 
forming and solving differential equations to determine 
the components of displacements.”  

We believe the theory of elasticity remained incomplete 
for more than one century. The deficiency pertained to 
the strain formulation (or the compatibility condition). A 
veteran researcher should not be surprised over a 
deficiency in the strain formulation because some of the 
formulae and equations of the solid mechanics discipline 
were not completed in the first attempt, but were 
perfected eventually. For example, perfecting the flexure 
formulae required more than one century between 
Galileo, Bernoulli, and Coulomb. Saint-Venant completed 
the shear stress formula that was initiated by Navier. 
Cauchy formulated the stress equilibrium equation that 
was also attempted by Navier in terms of displacement, 
but it contained only a single material constant instead of 
two, or the rari-constant theory with one quarter for 
Poisson’s ratio. Green subsequently resolved the 
misconception. We have completed the strain formulation 
that was initiated by Saint-Venant in 1860. The new 
information should be utilized to improve the theory of 
elasticity. 
 

 

Illustrative Example 

 

The use of the boundary compatibility condition is 
illustrated through the solution of a radially symmetrical 
annular plate. It is made of an isotropic material with 

Young’s modulus (E), Poisson’s ratio (), and coefficient 

of thermal expansion (). It has thickness (h) (considered 
unity) with outer and inner radii of (a and b), respectively, 
as shown in figure 1. The inner boundary is fully 
restrained while the outer boundary is free to expand. It is 
subjected to a linear temperature distribution with values 

(Ta and Tb) at (r = a and r = b), respectively. 
 

T  T  Ta  Tb  
(r  b) (4) 
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The response variables of the problem consists of two 

stresses  r and  , n  2 and one displacement (u, m 
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= 1). In the field, the problem is one degree indeterminate 
(r = n – m = 1). With one zero stress 

component,  r  0 , the free outer boundary at (r = a)  
is determinate. Boundary compatibility condition should 
not be imposed on the outer determinate boundary. The 
inner restrained boundary at (r = b) is indeterminate 
because it has two stresses 

r  0,  0 

 

and one BCC should be imposed. 
The equations of the completed Beltrami Michell form - 

ulation for the annular plate subjected to a thermal load are 

given below (Patnaik SN and Hopkins DA 2005).  
Field equations: In the field, there is an equilibrium 

equation and a compatibility condition. 
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The outer free determinate boundary has a traction 
condition. 

r  0 at r  a (6a) 
 
The inner clamped indeterminate boundary has a 

boundary compatibility condition. 
 

 r ET  at r  b (6b) 
 

The clamped boundary has a displacement condition, 

which is not used in the calculation of the stress state. It 

is used to back-calculate displacement from stress. 
 

u  0 at r  b (7) 

 

The stresses are obtained as solution to the equations (5, 

6a, 6b). 
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The displacement function was back-calculated by 

integrating the stresses. The displacement boundary 
condition ( u = 0 at r = b) was used to evaluate the 

integration constant. The displacement function is: 
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(9) 
 

The numerical values of the response parameters for (Ta  

= 100 C, Tb = 50 C,  = 1210
–6

 /C, E =3010
6
 psi, v 

= 0.3, a = 20 in. and b = 10 in.) are 

 

(1) at r = a: r = 0 ksi,  = –17.5 ksi, and u = 0.012 in. 
 
(2) at r = b: r = 14.2 ksi,  = –13.7 ksi, and u = 0 in. 
 

The sum of the stresses (r +  = 18508 – 1800 r) has a 

linear variation with respect to the r-coordinate because 

of a similar distribution of temperature (see Eq. (4)). 
 
 

CONCLUDING REMARKS 

 

For an indeterminate boundary, the number of stress 
components exceeds the number of displacement 
components. For a determinate boundary, the number of 
stress components is equal to the number of 
displacement components. The boundary compatibility 
conditions should be imposed only on an indeterminate 
boundary. They should not be imposed on a determinate 
boundary. The boundary compatibility condition has 
completed the Beltrami Michell formulation for an elastic 
continuum with stress and displacement boundary 
conditions. Stress, the primary variables of the method, is 
calculated from the equilibrium equations and 
compatibility conditions. Displacement can be back-
calculated from the stress state. 
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