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Three dimensional natural convection heat transfer flow of a non-Newtonian Casson fluid from a vertical 
stretching plane with surface mass transfer is investigated. Casson fluid model is used to characterize the 
non-Newtonian fluid behavior. The transformed governing nonlinear boundary layer equations are solved 
numerically by means of very robust computer algebra software MATLAB employing the routine bvpc45. 
Numerical calculations are obtained for the heat transfer from the stretching sheet and the wall temperature 
for a Casson parameter and a large range of values of the Prandtl number Pr . A comprehensive numerical 
computation is carried out for various values of the parameters that describe the flow characteristics, and 
the results are reported graphically. The missing values of the velocity and thermal functions are tabulated. 
The effect of increasing values of the Casson parameter b is to suppress the velocity field, whereas the 
temperature is enhanced with increasing Casson parameter. 
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INTRODUCTION 
 
Due to the numerous applications in industrial 
manufacturing processes, the problem of flow and heat 
transfer due to stretching surfaces has attracted the 
attention of researchers being a subject of considerable 
interest in the contemporary literature, [Crane, 1970; 
Banks, 1983; Grubka and Bobba, 1985; Magyari and 
Keller, 2000; Liao and Pop, 2004]. Processes involving 
the effects of mass transfer have attracted the attention of 
researchers due to its applications in many engineering 
applications, such as chemical processing equipments. 
The driving force for mass transfer is the difference in 
concentration. There are some fluids which react 
chemically with some ingredients present in them. The 
boundary-layer flows of non-Newtonian fluids have been 
given considerable attention due to ever increasing 
engineering applications. In order to obtain a thorough 
cognition   of    non-Newtonian   fluids   and   their various 

 
 
 

 
applications, it is necessary to study their flow behaviors. 
It is well known that the mechanics of non-Newtonian 
fluids present a special challenge to engineers, physicists 
and mathematicians. The non-linearity can manifest itself 
in a variety of ways in many fields, such as food 
processing, drilling operations and bio-engineering.  

On the other hand, the most popular among these 
fluids is the Casson fluid. We can define a Casson fluid 
as a shear thinning liquid which is assumed to have an 
infinite viscosity at zero rate of shear, a yield stress below 
which no flow occurs and a zero viscosity at an infinite 
rate of shear. The Casson model is a well-known 
rheological model for describing the non-Newtonian flow 
behavior of fluids with a yield stress [Casson, 1959]. The 
model was developed for viscous suspensions of 
cylindrical particles [Reher et al., 1969]. Regardless of the 
form or type of suspension,  some  fluids  are  particularly
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Figure 1. Coordinate system and physical model. 
 
 

 
well described by this model because of their nonlinear 
yield-stress-pseudoplastic nature. Examples are blood by 
CoKelet et al. [1963], chocolate by Chevalley [1991] and 
xanthan gum solutions by Garcia-Ochoa and Casas 
[1994]. The Casson model fits the flow data better than 
the more general Herschel–Bulkley model [Remizov, 
1999; Joye, 1998], which is a power-law formulation with 
yield stress [Bird et al., 1960; Wilkinson, 1960]. For 
chocolate and blood, the Casson model is the preferred 
rheological model. It seems increasingly that the Casson 
model fits the nonlinear behavior of yield-stress-
pseudoplastic fluids rather well and it has therefore 
gained in popularity since its introduction in 1959. It is 
relatively simple to use, and it is closely related to the 
Bingham model [Bird et al., 1960; Wilkinson, 1960], which 
is very widely used to describe the flow of slurries, 
suspensions, sludge, and other rheologically complex 
fluids [Churchill, 1988]. Eldabe and Salwa [1995] studied 
the Casson fluid for the flow between two rotating 
cylinders. Boyd et al. [2007] investigated the Casson fluid 
flow for the steady and oscillatory blood flow. Boundary 
layer flow of Casson fluid over different geometries is 
considered by many authors in recent years. Nadeem et 
al. [2012] presented MHD flow of a Casson fluid over an 
exponentially shrinking sheet. Kumari et al. [2011] 
analyzed peristaltic pumping of a MHD Casson fluid in an 
inclined channel. Mukhopadhyay et al. [2013] studied the 
unsteady two-dimensional flow of a non-Newtonian fluid 
over a stretching surface having a prescribed surface 
temperature, the Casson fluid model is used to 
characterize the non-Newtonian fluid behavior. The 
details of steady, fully-developed and laminar flow of 
Casson fluids have been described in [Fung, 1981]. In 
view of the   non-Newtonian  nature of blood in capillaries 
 
 

 
 
 

 
and the filtration/absorption property of the walls while 
Oka [1979] studied blood flow in capillaries with 
permeable walls using the Casson fluid model. In this 
contribution the boundary layer flow due to stretching 
plane with mass transfer is studied. More studies have 
been obtained see Nadeem et al. [2013] and Nadeem et 
al., [2014a, b, c]. We venture further in the regime of 
three-dimensional flows of a non-Newtonian fluid. Casson 
fluid model is used to characterize the non-Newtonian 
fluid behavior. 

 
Problem formulation 
 
Consider a steady three-dimensional, boundary layer, 
non-Newtonian Casson fluid flow past a surface in the 
vertical plane stretching in the x –direction with a velocity 
bx . The y –direction makes an angle q with the  
horizontal line. In addition, z –direction is normal to the 
sheet. Casson fluid model is used to characterize the 
non-Newtonian fluid behavior, the physical model and 
coordinate system is shown in Figure 1. Assuming that 
the edge effects are negligible, all variables will be 
independent of the y –direction Moreover, the rheological  
equation of state for an isotropic and incompressible flow 
of a Casson fluid as [Eldabe and Salwa, 1995]. 
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Where,  t ij    is  the     (i , j ) -th  component  of  the  stress 
 

tensor, t ij = e ij eij   and e ij are the (i , j ) -th component of 
 

the deformation rate,   p  is the product of the component 
  

of deformation rate with itself, p c is a critical value of this 

product based on the non-Newtonian model, mB is plastic 

dynamic viscosity of the non-Newtonian fluid, and Py is 

the yield stress of the fluid. So, if a shear stress 
 
less than the yield stress are applied to the fluid, it 
behaves like a solid, whereas if a shear stress greater 
than yield stress is applied, it starts to move. Considering 
the balance laws of mass, linear momentum and energy 
and using the Boussinesq’s approximation the governing 
equations of this flow can be written in the usual form as: 
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The appropriate boundary conditions for the governing 
equations are: 
 
z = 0, u = u w (x ) = bx , v = 0, w = W , T  = Tw  

z ®  ¥  ,u ®  0,v ®  0, ¶w 
®  0,    T  ®  T 

(6) 
 

¶z ¥ 
 

   
 

 
Where, (u , v , w )  are the velocity components in (x , y , z ) 
 
directions, respectively, n is the kinematic viscosity, T is 
the temperature of the fluid inside the thermal boundary  
layer, whereas T ¥ is the ambient temperature, b is the 

Casson parameter. u w ( x ) is the velocity of the stretching 

surface, b  being a positive constant. 
% 

is the thermal 
 

b 
 

expansion coefficient and r  is the density of the fluid. A 
 
majority of the existing exact solutions in fluid mechanics 
are similarity solutions which reduce the number of 
independent variables by one or more. The methods for 
generating similarity transformations for equations of 
physical interest are discussed by Ames [1965]. Similarity 
solutions are often asymptotic solutions to a given 
problem and may have utility in this area of limiting 
solutions. Similarity solutions may be used to gain 
physical insight into these details of complex fluid flows 
and these solutions exhibit most of the characteristic as 
well as the influence of the physical and thermal 
parameters of the actual problem. In order to get a 
similarity solution of the problem we define the following 
transformations: 

 
 

bx f ¢( h ) + A cos q M ( h ), 
         

u = v = A sin q N ( h ), w = -  bn f ( h) 
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Upon substituting Equation (7) into Equations (2) and (5), 
we obtain the following ordinary differential equations: 
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The boundary conditions (6) can be written as follows 
 
f (0) = f w , f ¢(0) = 1, H (0) = 1, M (0) = N (0) = 0 

f ( ¥  ) ®  0, H ( ¥  ) ®  0, N ( ¥  ) ®  0, M ( ¥  ) ®  0   (12) 
 
In the   equations,   the   prime   denotes   ordinary  
differentiation  with  respect  to  the similarity  variable h , 
    

and  the  mass  transfer  parameter f w  = - W  /   bn  is  
negative for injection and positive for suction. The local 
heat flux may be determined by Fourier's Law as: 
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The local heat transfer coefficient is given by:  

h = 

q
w 

 

  

T w  -  T ¥ 
 
In practical applications, the quantity of physical interest 
in our case is the local Nusselt number N u , which may 
be written in non-dimensional form as: 
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 represents Reynolds number. n 

 
In addition, the exact analytical solution of Eq. (8) is given 
as 
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its derivatives are given by the exact solution (14), then  
the  temperature distribution   H ( h)   can  be  solved 

 

analytically as:     
 

        
¥  

 

      ¥ 
-  Pr ò f d h  

 

   1     
 

H ( h ) = 
    

ò 
e h 

d h 
 

 ï
ì  ¥ ï

ü   
 

¥ ï -  Pr  ï  h   
 

í ò f d h ý     

  ï  ï      

  ï  h ï      

 ò e 
îï   þïd h   

 

0         
 



                       
 

Table 1. Comparison values of  f 
¢¢ ¢ ¢ 

and 
¢        

f w  =  0  and  b ®  ¥ (Newtonian 
 

(0), H  (0), N  (0) M  (0) for various values of Prandtl number when 
 

fluid) [Gorla and Ibrahim, 1994].                    
 

                          
 

     
f 

¢¢      ¢    ¢     ¢     
 

  Pr    (0)     H  (0)    N  (0)     M  (0)    
 

   

Gorla, Ibrahim 
 

Present 
 

Gorla, Ibrahim Present 
  

Gorla, Ibrahim Present 
 

Gorla, Ibrahim 
 

Present 
 

          
 

0.07  -1.01435   -0.99956 -0.06562  -0.10128   8.69012 3.89642   5.74631  2.68875 
 

0.2  -1.01435   -0.99956 -0.16912  -0.17880   3.28714 2.78227   2.30913  1.98471 
 

0.7  -1.01435   -0.99956 -0.53488  -0.45390   0.81521 1.210093  0.69620  0.95644 
 

2.0  -1.01435   -0.99956 -0.91142  -0.91109   0.61602 0.61718   0.52651  0.53413 
 

3.0  -1.01435   -0.99956 -1.15970  -1.16515   0.47431 0.48898   0.42337  0.43525 
 

7.0  -1.01435   -0.99956 -1.89046  -1.89627   0.30942 0.30908   0.28197  0.28870 
 

10  -1.01435   -0.99956 -2.30350  -2.30949   0.25439 0.25669   0.23952  0.24389 
 

20  -1.01435   -0.99956 -3.35391  -3.35674   0.17964 0.18034   0.17045  0.17651 
 

50  -1.01435   -0.99956 -5.42474  -5.43271   0.11281 0.11433   0.10919  0.11603 
 

70  -1.01435   -0.99956 -6.46221  -6.46698   0.09562 0.09693   0.09271  0.09972 
 

  
Table  2. 

 
Comparison  values of  f 

¢¢ ¢ ¢ 
and 

¢ 
various  values  of  mass  transfer parameter  when  Pr = 7  and 

 

   (0), H  (0), N  (0) M  (0) for 
 

  b ®  ¥  (Newtonian fluid) [Gorla and Ibrahim, 1994].                
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   Gorla, Ibrahim Present  Gorla, Ibrahim Present   Gorla, Ibrahim Present  Gorla, Ibrahim Present   

         
 

-0.7  -0.72252  -0.70938  -0.08715  -0.09198  0.69711 0.72849  0.58929 0.59074  
 

-0.4  -0.83420  -0.81968  -0.50012  -0.50768  0.50709 0.52185  0.44702 0.45212  
 

0.0  -1.01435  -0.99954  -1.89046  -1.89627  0.30554 0.30908  0.28197 0.28870  
 

0.4  -1.23180  -1.21870  -3.98932  -3.99699  0.19490 0.19392  0.18525 0.19299  
 

 0.7  -1.41884  -1.40775  -5.30002  -5.44026  0.03024 0.14582  0.02741 0.15109  
 

 
 

 
RESULTS AND DISCUSSION 
 
In the present contribution, numerical calculations are 
performed for the boundary layer flow heat transfer of 
non-Newtonian Casson fluid past a stretching plane with 
mass transfer effect. Moreover, the system of ordinary 
differential equations (8)-(11) subject to the boundary 
conditions (12) was solved numerically using the function 
bvp4c from Matlab for different values of the Casson  
parameter and mass transfer f w . The Prandtl number Pr 

is set equal to 6.2 (water) throughout the paper. The 
 
relative tolerance was set to 10

- 10
 . In this method, we 

have chosen a suitable finite value of h ® ¥ namely  
h =  h¥   = 15 .  Since  the  present  problem  may  have 
 
more than one (dual) solution, the bvp4c function requires 
an initial guess of the desired solution for the ordinary 
differential Equations (8) to (11). The guess should satisfy 
the boundary conditions and reveal the behavior of the 
solution. Determining an initial guess for the first (upper 
branch) solution is not difficult because the bvp4c method 
will converge to  the first  solution  even for poor guesses. 

 
 

 
However, it is difficult to come up with a sufficiently good 
guess for the solution of the system of the ordinary 
differential Equations (8) to (11) in the case of opposing 
flow. To overcome this difficulty, we start with a set of 
parameter values for which the problem is easy to be 
solved. Then, we use the obtained result as initial guess 
for the solution of the problem with small variation of the 
parameters. This is repeated until the right values of the 
parameters are reached. The results are given to carry 
out a parametric study showing influences of several non-
dimensional parameters, namely, Casson parameter b , 
Prandtl number Pr and mass transfer  
parameter f w . For the validation of the numerical results 
 
have been obtained in this study, the case when the 
Casson parameter approaches to infinity ( b ® ¥ , that  
is Newtonian fluid case) has been considered and 
compared with the previously published results. Tables 1  
and 2 present the numerical values of f ¢¢(0), M ¢(0) and 
 
N ¢(0) with the results reported by Gorla and Ibrahim [1994] 

which show a very good agreement. 
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Figure 2. Stream function as a function of the suction or  
injection parameter. 
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Figure 3. Distribution of f ¢ as a function of the suction or 

injection parameter. 
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Figure 4. Distribution of temperature H as a function of the 
suction or injection parameter. 
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Figure 5. Decay of velocity N  as a function of the suction or 
 

injection parameter. 

 
 

 
Figures 2 to 6 illustrate the effects of surface mass 
transfer on the velocity and temperature distributions for 
Newtonian and non-Newtonian Casson fluids. Figure 2 
displays the distribution of the velocity component in the z 

-direction for Pr = 6.2 considering Newtonian and Casson 

fluid. The surface mass transfer value f (0) has a 
 
lot influence on the magnitude of f ( h) . It is observed that 

f ( h) approaches a constant value f ( ¥ ) monotonically such 

that f ¢( ¥ ) ® 0 . The values of f ( ¥ ) are found 
 
from the numerical solution and are a measure of the 
entrainment velocity. We notice from Figure 2 that higher 
entrainment velocities are produced with higher values of 
suction velocity at the surface. Figure 3 shows the 

 
 

 
distribution of f ¢( h) within the boundary layer. It is 

observed that higher values of injection rates results in 

more linear shape for f ¢( h) . Figure 4 illustrates the 
 
distribution of the normalized temperature profiles for Pr = 

6.2 with the surface mass parameter treated as a variable. 

We observe that high suction at the surface reduces the 
thermal boundary layer thickness and high injection 

increases the thermal boundary layer thickness. In all cases, 
the exponential decay of the thermal boundary layer is 

evident. Increasing values of injection rates move the 

location of the maximum M ( h) values of 
 
(normalized free convection velocity in x -direction) and N 
( h) (normalized free convection velocity in y -direction) 
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Figure 6. Decay of velocity M as a function of the suction or 
injection parameter. 
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Figure 8.  Distribution of f ¢  as a function of Casson 
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Figure 9. Distribution of temperature H as a function of 
 

Casson parameter. 
 
 
 
profiles away from the surface. The exponential decay of 
the velocity boundary layer is evident from the profiles 
presented (Figures 5 and 6). On the other hand, Figures 
7 to 11 depict the influences of non-Newtonian Casson 
parameter β on temperature and velocity, distributions. 
The increasing values of the Casson parameter that is 
the decreasing yield stress (the fluid behaves as 
Newtonian fluid as Casson parameter becomes large) 
suppress the velocity field. The effect of increasing values 
of β is to reduce the rate of transport, and hence, the 
boundary layer thickness decreases. It is observed  
that  f ( h ), f ¢( h)  and  the  associated  boundary  layer 
 
thickness are decreasing function of β, whereas, both of 
M   ( h  )  and    N ( h)    increase   with increasing Casson 

 
 

 
parameter. The effect of increasing β leads to enhance 
the temperature profile H ( h) as seen from Figure 9. The 
 
thickening of the thermal boundary layer occurs due to 
increase in the elasticity stress parameter. Prandtl 
number signifies the ratio of momentum diffusivity to 
thermal diffusivity. It is seen that the temperature 
decreases with increasing Pr as observed from Figure 
12. Furthermore, the thermal boundary layer thickness 
decreases sharply by increasing Prandtl number. The 
temperature gradient at surface is negative for all values 
of Prandtl number as seen from Figure 13 which means 
that the heat is always transferred from the surface to the 
ambient fluid. Fluids with lower Prandtl number will 
possess   higher   thermal   conductivities    ( and   thicker 
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Figure 10. Decay of velocity N as a  function of 
 

Casson parameter. 
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Figure 11. Decay of velocity M  as a function of Casson 
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Figure 12. Distribution of temperature H as a function of 
Prandtl number. 
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Figure 13. Temperature gradient - 
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as a function of Casson  H  (0) 
 

parameter with different values of Prandtl number. 
 
 

 
thermal boundary layer structures), so that heat can 
diffuse from the surface faster than for higher Pr fluids 
(thinner boundary layers). Physically, if Pr increases, the 
thermal diffusivity decreases and this phenomenon leads 
to decrease the energy transfer ability and reduces the 
thermal boundary layer. In addition, Figures 14 to 16 
display the effect of mass transfer parameter and it is 
observed that an increase in mass transfer parameter  
tends to decrease all f ¢¢(0), M ¢(0) and N ¢(0) . 
 

 
Conclusions 
 
A numerical study of natural convection, steady three 
dimensional boundary layer flow and heat transfer of non-
Newtonian Casson fluid over a stretching sheet with 
suction or injection effect has been performed. It is shown 
in this paper how the Prandtl number Pr , and Casson 
parameter affect the temperature distribution, velocity and 
the heat transfer coefficient. We can conclude that: 
 


 The effect of increasing values of the Casson parameter b is 
to suppress the velocity field, whereas  
the temperature is enhanced with increasing Casson 
parameter.  
 The thermal boundary layer thickness depends strongly 
on the Prandtl number Pr . Further; it is found that an 
increase in Pr results in a decrease of the temperature 
distribution and thermal boundary layer thickness. 




 Surface mass transfer rate influences the flow and 
temperature fields. Suction at the surface produces 
higher entrainment velocities, whereas injection makes 
the velocity and temperature distributions more linear. 


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Figure 14. Variation of f 
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as a function of Casson  (0) 
 

parameter for various suction or injection parameters. 
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Figure 15. Variation of 
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as a function of Casson  
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parameter for various suction or injection parameters. 
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Figure 16. Variation of M  (0) as a function of Casson 
 

parameter for various suction or injection parameters. 
 

 
 
 

 


 Surface suction reduces the thermal boundary layer thickness 
while injection increases it. 
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Nomenclature  

A Free convection parameter 
b Positive constant 
H Dimensionless temperature 
k Thermal conductivity 
M Dimensionless in x -direction 

N Dimensionless in y -direction 

N u Nusselt number 
Pr Prandtl number 

qw Surface heat flux 

Re Reynolds number 
T Temperature of the fluid 

(u , v , w ) Velocity components of the fluid 

u w Velocity of stretching sheet 

(x , y , z ) Coordinate axes 

 

Greek symbols 

f Dimensionless velocity 
 

b Casson parameter   
% Thermal expansion coefficient 

 
 

b   
q Angle 
n Kinematic viscosity 
h Similarity variable 

 
Subscripts  

w Conditions at the surface of cylinder   
¥ Conditions in the free stream  

 


