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Irreversibility of MHD fluids in natural convection through a square cavity is numerically investigated. The 
cavity is heated and cooled along the active walls whereas the two other walls are adiabatic. Entropy 
generation due to heat transfer, fluid friction and an imposed horizontal magnetic field has been determined 
for a laminar flow, by solving numerically the conservation equations of continuity, momentum and energy, 
using the Control Volume Finite-Element Method. The structure of the studied flows depends on three 
dimensionless parameters which are: the Prandtl number, the thermal Grashof number and the Hartmann 
number. Results show that the magnetic field parameter (Hartmann number) suppresses the flow and this 
leads to a decrease of entropy generation. Temperature decreases with the increase of the magnetic field 
parameter. The average Nusselt number increases with the Prandtl number and, in particular, its effect is 
more evident for higher values of Hartmann number. 
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INTRODUCTION 
 
Recently, researches concerning the flow and heat 
transfer characteristics of a magnetic fluid in natural 
convection have received considerable attention. The 
externally imposed magnetic field is a widely used tool, 
for instance in the control of melt flow in a bulk crystal 
growth of semiconductors, in many other engineering 
applications such as: in magnetic cooling, in magnetic 
refrigerator, in water treatment device, in corrosion 
inhibition treatment, in magneto hydrodynamics (MHD) 
power generation and in plasma techniques. One of the 
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main purposes of the electromagnetic control is the 
stabilization of the flow and the suppression of the 
oscillatory instabilities arising at certain values of the 
control parameters. The convection of electrically 
conducting fluids such as liquid metal in presence of a 
magnetic field has been one of the major interesting 
research subjects due to its direct application to various 
physical phenomena as well as to crystal growth 
processes. It is an established physical fact that the 
motion of an electrically conducting fluid is suppressed by 
the presence of a magnetic field. Also, some important 
crystal materials are good electrical conductors in their 
liquid state. During manufacturing of the crystals, 
unwanted convective flows can significantly be 
suppressed in liquid metals and other electrically conducting
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fluids by applying an external magnetic field. This 
phenomenon is complex in nature, so a thorough 
understanding of the relation between an applied 
magnetic field and the resulting heat transfer is necessary 
for the proper design, and control of thermo magnetic 
devices.  

Many researches are focused on the flow structure and 
heat transfer, depending on the operating conditions and 
the fluid characteristics. Davis [1983] provided a well 
known set of benchmark solutions for steady natural 
convection of air in a horizontally heated square cavity for 

Rayleigh numbers up to 10
6
. Braunsfurth et al. [1997] 

presented numerical and experimental temperature 
profiles corresponding to laminar natural convection of 
liquid gallium in a rectangular cavity heated through the 
side walls. For the same problem, a simplified model was 
proposed by Graebel [1981]: the heat transfer results 
have been analytically derived for the Prandtl number 
about 0.05 up to infinity. Lage and Bejan [1991] studied 
laminar natural convection in a square enclosure heated 

through the side walls for 0.01≤ Pr ≤ 10 and 10
2
 ≤ Ra ≤  

10
11

 and addressed the influence of the Prandtl number 

on the heat transfer. A similar problem has been 
analyzed for 0.011 ≤ Pr ≤ 0.054 by Saravanan and 
Kandaswamy [2002]. They observed a significant effect 
of a variable thermal conductivity on the heat transfer 
through the cavity. Krakov and Nikiforov [2002] studied 
the influence of the angle between the direction of the 
temperature gradient and that of a uniform magnetic field 
on the convective flow structure, and on the heat flux 
intensity in a square cavity. Jalil and Al-Tae’y [2007] 
numerically studied the effect of the direction of an 
external magnetic field applied on liquid metal (molten 
sodium) that fills a square enclosure. They showed that a 
magnetic field in x-direction is more effective on flow 
pattern and temperature distribution than that from y-
direction, and the orientation effect of the magnetic field 

depends on which magnetic field components Bx or By is 
in demand. Numerical simulation of the magnetic control 
of heat transfer in thermal convection was investigated by 
Kenjere and Hanjali [2004]. They found that the 
application of a local wall-normal magnetic field, confined 
to the near-wall region, proved in both configurations to 
be almost equally effective as the homogeneous field 
over the entire flow, especially for lower magnetic 
intensities. Furthermore, the distribution and the 
orientation of the imposed magnetic field need to be 
optimized for each specific application. The stability 
control by a magnetic field in a cylinder filled with mercury 

and submitted to a uniform vertical magnetic field B0 was 

studied by Davoust et al. [1999]. They found that the 
temperature oscillations occur with reproducibility when 

B0 smoothly decreases. For a moderate scale of the 

Grashof number (that is GrT =10
5
), oscillatory instabilities 

occur in a way of a subcritical bifurcation which yields two 
waves. Pirmohammadi et al. [2011] numerically 
investigated   the   magneto   convection   of  the molten 

 
 
 

 
sodium inside a differentially heated enclosure. They 
showed that the resistance to fluid motion is stronger 
near the hot wall, and the flow intensity increases in this 
region. The Lorentz and the viscous forces are lower near 
the hot wall because the electrical conductivity and the 
viscosity are lower near this wall, and therefore, the 
velocity increases in this region. For higher values of 
Hartmann number, at which the conduction heat transfer 
is dominant, the temperature gradient and the slope of 
the temperature profile near the hot wall are higher than 
those at the cold wall, because the thermal conductivity is 
lower near this wall. By increasing Hartmann number, the 
Nusselt number approaches unity which indicates a pure 
conduction regime because the Lorentz force interacts 
with the buoyancy force and suppresses the convection. 
Al-Najem et al. [1998] used the power control volume 
approach to determine the flow and the temperature 
fields under a transverse magnetic field in a tilted square 
enclosure, with isothermal vertical walls and adiabatic 
horizontal walls, for a Prandtl number equal to 0.71. They 
showed that the suppression effect of the magnetic field 
on convection currents and heat transfer is more 
significant for lower inclination angles and higher Grashof 
numbers. Piazza and Ciofalo [2002] showed that the 
suppression of the flow field was found to be stronger in 
the core region and a complex three-dimensional flow 
(with secondary motions) and current pattern were 
predicted in the fluid domain. A weak reverse flow 
(against buoyancy) occurred in the core region, and was 
associated with the presence of two centers of circulation 
in the left and the right hand sides of the enclosure. An 
analogy was observed between the stream function ψ 
and the electrical potential ϕ in the mid-plane, normal to 
the magnetic field B. Henry et al. [2008] numerically 
studied the directional effect of a magnetic field on the 
onset of time-periodic convection in a three-dimensional 
confined cavity. They showed that the critical Grashof 
number and the frequency at the Hopf bifurcation point, 
exhibit similar exponential dependencies on the 
Hartmann number, the oscillatory transition is dominated 
by the vertical shear of the longitudinal flow, and that the 
magnetic energy is not the dominant source of 
stabilization, particularly in the presence of a vertical 
magnetic field. Sankar et al. [2006] studied the effect of 
the magnetic field directions (that is radial or axial) on the 
buoyancy-driven convection in a vertical cylindrical 
annulus, filled with a low Prandtl number electrically 
conducting fluid (Pr = 0.054). They found that the external 
magnetic field in the vertical direction is more effective 
than that applied parallel to the heated vertical wall; the 
magnetic field suppresses the convective flow and 
eliminates the flow oscillations. The magnetic field 
direction plays an important role in suppressing the 
convective flows, and it is more effective when it is 
perpendicular to the direction of the primary flow. This 
phenomenon has an important implication on the design 
of   magnetic   systems   for  stabilizing or weakening the 



 
 
 

 
convective effects. A laminar, two-dimensional MHD 
natural convection within a liquid gallium filling a square 
enclosure in presence of an inclined magnetic field was 
investigated by Sathiyamoorthy and Chamkha [2010]. It 
was found that the application of the magnetic field 
reduces the convective heat transfer rate in the cavity for 
any angle. In addition, the local Nusselt number at the 
bottom wall of the cavity exhibits an oscillatory behavior 
along the horizontal distance, for the case of a linearly 
heated side walls, whereas it continuously increases for 
the case of a linearly heated left wall and cooled right wall 
with the exception of large Hartmann numbers for a 
vertically-applied magnetic field. The average Nusselt 
numbers through the bottom and side walls for the case 
of a linearly heated side walls, showed an oscillatory 
behavior when Hartmann number values increase, 
especially for a vertically-applied magnetic field, whereas 
the average Nusselt numbers through the bottom, the left 
and the right walls for the case of a linearly heated left 
wall and cooled right wall decreases as the Hartmann 
number increases. Pesso and Piva [2009] numerically 
investigated the laminar natural convection in a square 
cavity heated through the side walls for small Prandtl 
number fluids with large density differences. They 
showed that the mean value of Nusselt number increases 
with Prandtl number and, in particular, its effect is more 
evident at high Rayleigh numbers.  

Studies of heat transfer of magnetic fluids are of a great 
practical importance, since the applied magnetic field is a 
control parameter of the flow structure and heat transfer 
inside a given system. Consequently, degraded energy, 
which is expressed by entropy generation, can be 
minimized via the applied magnetic field in the considered 
system. Recently, Bouabid et al. [2011] numerically 
studied entropy generation in natural convection through 
an inclined rectangular cavity using the Control Volume 
Finite Element Method (CVFEM). Results show that for a 
fixed irreversibility distribution ratio, entropy generation 
increases with the aspect ratio of the cavity for higher 
values of the thermal Grashof number. For fixed values of 
the thermal Grashof number, entropy generation 
magnitude increases with the aspect ratio. Bouabid et al. 
[2011] studied the contributions of thermal, diffusive, 
friction and magnetic effects on entropy generation. It 
was found that entropy generation is mainly due to heat 
transfer, then due to mass transfer. The magnetic effect 
is more pronounced than viscous dissipation. The 
magnetic field parameter suppresses the flow in the 
cavity which induces a decrease of entropy generation. At 
local level, entropy generation lines are confined on lower 
heated and upper cooled regions of the active walls. El-
Jery et al. [2010] numerically studied the effect of an 
oriented magnetic field on entropy generation in natural 
convection flow for air and liquid gallium. They showed 
that in steady state, for lower Hartmann number values 
(Ha = 10), and for relatively higher thermal Grashof 

number values (GrT = 10
5
),  maximum  value  of  entropy 
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generation is found at an inclination angle of the magnetic 
field, α = 90 and 60° for air and liquid gallium, 
respectively. For both fluids, irreversibility due to viscous 
effects is the major contribution of entropy generation. 
Effects of an evanescent magnetic field on entropy 
generation at the onset of natural convection inside a 
square cavity are numerically studied by Magherbi et al. 
[2010]. They showed that the relaxation time of the 
evanescent magnetic field should be selected so that the 
magnetic field acts only in transient state. Furthermore, 
the increase of the relaxation time induces the decrease 
of maximum entropy generation that occurs at longer 
time, from the beginning of the transient state. Mahmud 
and Fraser [2004] studied entropy generation in a fluid 
saturated porous cavity for laminar MHD natural 
convection, where the magnetic force is assumed acting 
along the gravity force. It was found that, increasing 
Hartmann number (that is magnetic force), tends to retard 
the fluid motion, both average Nusselt and dimensionless 
entropy generation numbers decrease with the increase 
of Hartmann number, and approach a limiting value 
(asymptotic value).  

Double-diffusive natural convection in two-dimensional 
enclosure with aspect ratio 4, partially heated and salted 
from the left vertical wall is investigated by Oueslati et al. 
[2013]. They determined that the heat and mass transfer 
rates are significantly enhanced by increasing the 
Rayleigh number and the total entropy generation values 
due to fluid friction are considerably greater than those 
due to diffusion and to heat transfer. The irreversibility 
phenomena occurs only at the vicinity of the active walls 
where an oscillatory regime could be observed for high 

values of Rayleigh number (Ra=10
5
) showing a periodic 

trend, especially at zones of high velocity gradients. Chen 
and Du [2011] analyzed the entropy generation of 
turbulent double diffusive natural convection in a 
rectangle cavity. They obtained that the total entropy 
generation increases with Rayleigh number, it increases 
quickly and linearly with the buoyancy ratio and nearly 
linearly with the aspect ratio of the cavity. They observed 
a new phenomenon in the considered convectional flow 
implying the emergence of irregular distributions from 
regular flow patterns.  

Nanofluids represent an innovative way to increase 
thermal conductivity and, therefore, heat transfer, they 
are prepared by dispersing solid nanoparticles in fluids 
such as water, oil, or ethylene glycol. Several authors 
have tried to establish convective transport models for 
nanofluids. An unsteady free convection boundary-layer 
flow of a nanofluid due to a stretching sheet is studied 
with the influence of magnetic field and thermal radiation 
by Khan et al. [2012], they remarked that larger values of 
the Grashof number showed a significant effect on 
momentum boundary layer, the effect of the Brownian 
motion and thermophoresis stabilizes the boundary layer 
growth which is highly influenced by the Prandtl number 
and the Eckert number and the flow characteristics could 
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be controlled by using a magnetic field. Magneto-
hydrodynamic and Transient mixed convective laminar 
boundary layer flow of a nanofluid over an exponentially 
stretching sheet and from a continuously stretching 
permeable surface in the presence of magnetic field and 
thermal radiation flux have been studied, respectively by 
Ferdows et al. [2012].  

The effects of heat generation/absorption and thermal 
radiation on mixed convection flow over an unsteady 
stretching permeable surface has been studied by Khan 
et al. [2012].They concluded that the momentum and 
concentration boundary layer thickness increase with 
increase in the unsteadiness parameter whereas the 
thermal boundary layer thickness decreases, as Suction 
parameter and magnetic parameter increase the 
momentum boundary layer thickness decreases 
gradually. The thermal boundary layer thickness and heat 
transfer rate increases with increase in the radiation 
parameter, as heat source parameter increases the 
thermal boundary layer thickness increases gradually. 
The concentration boundary layer thickness and surface 
mass transfer rates reduces as Chemical reaction 
parameter increase.  

Recently there have been relatively few studies [Khan 
et al., 2012; Ferdows et al., 2013; Shakhaoath et al., 
2013; Shakhaoath et al., 2014; Ifsana et al., 2014; 
Shakhaoath et al., 2011] that reports MHD boundary 
layer nanofluid flow as well as the effects of thermal 
radiation and magnetic field on boundary layer flow. A 
numerical investigation of unsteady magneto 
hydrodynamic mixed convective boundary layer flow of a 
nanofluid over an exponentially stretching sheet in porous 
media [khan et al., 2013; Shakhaoath et al., 2011] has 
shown that velocity and momentum boundary layer 
thickness are enhanced with increasing thermal and 
species Grashof numbers, Brownian motion and 
thermophoresis parameters, whereas they are decreased 
with increasing Darcian porous media, hydromagnetic 
and viscosity ratio parameters. Nanofluid temperature 
and thermal boundary layer are suppressed with 
increasing Prandtl number. Nanoparticle concentration 
and concentration boundary layer thickness are both 
increased with increasing Prandtl number, whereas they 
are reduced with increasing Lewis number.  

MHD boundary layer flow of a nanofluid on a 
continuously moving surface with chemical reaction has 
been studied numerically [Shakhaoath et al., 2014]. 
Results revealed that velocity and concentration 
decreases, whereas the temperature increases with an 
increase in the magnetic field intensity, the concentration 
decreases as increasing chemical reaction and an 
increase in the power law index causes a decrease of the 
skin-friction coefficient and the heat and mass transfer 
rates at the moving plate surface. Magnetohydroynamics 
mixed convection boundary layer heat transfer flow of a 
nanofluid near the stagnation-point on a vertical plate with 
the   effect   of    heat   generation   has been studied by 

 
 
 

 
Karim et al. [2013]. They observed that momentum 
boundary layer thickness increases for all cases of 
Copper, Alumina and Titania. The temperature boundary 
layer thickness is going down for varying different types 
of nanoparticle, increasing heat generation and Prandtl 
number respectively.  

Although the above mentioned works and many other 
researches talking about the influence of a magnetic field 
on fluid flow, heat transfer and entropy generation in 
different flow configurations, effects of various Prandtl 
number fluids on entropy generation in presence of a 
magnetic field in convective heat transfer have not been 
encountered in our knowledge. For that reason, the aim 
of the present paper is to numerically study the influence 
of Prandtl number in presence of a magnetic field on heat 
transfer, fluid flow and entropy generation in natural 
convection through a square cavity. The numerical 
resolution is based on the control volume finite-element 
method for resolving the governing equations in 2D 
approximation. Entropy generation expression in natural 
convection in presence of an oriented magnetic field is 
firstly derived. Heat transfer, velocity profiles, total and 
local irreversibility are then studied by using three 
dimensionless independent variables which are: the 
Prandtl number, the thermal Grashof number and the 
Hartmann number. 
 
 
GOVERNING EQUATIONS 
 
Let us consider a square cavity in 2D approximation, 
submitted to an oriented magnetic field B as shown in 
figure 1.  

The two active left and right walls are at different but 

uniform temperatures (T’h, T’c) while the two other walls 
are adiabatic. The fluid is considered as a Newtonian, 
Boussinesq incompressible fluid. The fluid properties are 
described by its kinematic viscosity ν, its thermal 

diffusivity T and its thermal volumetric expansion 

coefficients βT. The mass density of the fluid is 
considered to vary linearly with temperature such as: 
 
 = 0 [1 − T (T’ − T’0)] (1) 

 

Where:     
 

T 
1    

 

 

  (2)  


0 

 

  T P  
 

0 is the fluid mass density measured at the bulk 

temperature T’0. The dimensionless continuity, 
momentum and energy equations that govern the 
problem are given respectively by: 
 

u 
 
v 

 0  

x y 
 

 
(3)     

 



       
 

    

u = v = 0; P = 0 and T = 0.5 – x (9) 
 

  T ' 
 0  

  

y' 
    

 

   

Adiabatic walls: 
 

 

     
 

     
 

    at y = 0 and y = 1  
 

    T 
 0 

 
 

    

y 
 

 

      (10)          

B 
       

      
 

  

T ' 

 Active walls:  
 

    
 

  
 0 at x = 0, T = 0.5 

 
 

  
y'  

 

       
 

at x = 1, T = - 0.5 (11)  
Figure  1.  Schematic  view  of  the  physical 

 

 
 

model.  
 

SECOND LAW FORMULATION  
 

 
 
 u 

 div J 
 
 

 P 
 Pr  Ha

2
 (v cos  u sin ) sin   

t 
u 

 x 
 

    

    
  


 
v

  div J 
v 
 


 
P

 Gr  T  Pr  Ha
2
 (u sin   v cos) cos 

 

t   y T  
 

    
 

 
The existence of thermal and velocity gradients between  

(4) the active walls of the cavity, in addition to a magnetic 
field, sets the fluid in a non-equilibrium state which 
causes entropy generation in the system. According to 
the local thermodynamic equilibrium with linear transport 
theory, the volumetric local entropy generation is given by 
Woods [1975]:   
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   u  2  v 
2  v  u 

2   
 

f  f  2  2         
 

  x    y   x  y    
 

              (16)                
 

Β 
      2       

(17) 
 

 B   u sin  v cos        
 

f and  
B are the  irreversibility distribution  ratios  

  
  

related to the velocity gradients and the magnetic field, 
respectively. They are given by: 
 
  

 '  T  
2  

 eT0
'
   BT   

2 
(18)       

 


 f  

 
T
0    ; B  

 
     

 

    LT '     T '    
 

 
Total dimensionless entropy generation is obtained by a 
numerical integration of the dimensionless local entropy 
generation over the entire volume of the cavity, Ω. It is 
given by: 
 

S  S.l d (19)  
  

 

 
The average Nusselt number, which denotes heat 
transfer, is calculated through the heated wall. It is given 
by: 
 
  1  T

 ) dy 
 

 

u   ( (20) 
 

   x  
 

  0    

      

 
 
NUMERICAL PROCEDURE 
 
Governing Equations (3) to (6) could be solved for the 
determination of the temperature and the velocity fields 
which depend on the choice of the numerical support of 
resolution. In this study, a modified version of the Control 
Volume Finite-Element Method (CVFEM) of Saabas and 
Baliga [1994] is adapted to standard-staggered grids, in 
which pressure and velocity components are stored and 
calculated at different points. A fully implicit scheme is 
used to resolve the set of non linear Equations (3) to (6). 
The CVFEM uses a control volume that it is not obligatory 
regular, and then can delimit a complicate domain. The 
grid flexibility is the major advantage of this method. 
 
 
Grid description 
 
Figure 2 shows the used standard-staggered grids for the 
calculation of pressure and velocity components. The 
control volume is constructed around each node P by 
joining the centers of the triangular elements to the 
midpoints of the sides as indicated in figure 3, where we 
have constructed, as example, the control volume 
corresponding to the u-component. Those of v-
component and pressure are obtained in classic finite-
volume method.  The   obtained  control volume has more 
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Figure 2. Nodal locations on a staggered grid: O: 
P nodes, nodes,  : v nodes. 
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Figure 3. Control volume for u component. 

 
 
 
faces and brings more neighboring nodes. 
 
 
Numerical resolution 
 
The conservation Equations (4) to (6) are integrated 
similarly over each of the above indicated control 
volumes to obtain equations of nodal values for velocity 
components and temperature. It could be noticed that 
temperature is calculated at the same nodes of u-
component. A special procedure is used to integrate the 
mass conservation Equation (3).  

A shape function describing the variation of the 

dependant variable  (= u, v, T) is needed to calculate the 
flux across the control volume faces. Following Saabas 
and Baliga [1994] in assuming a linear and an 

exponential variation when the dependent variable  is 
calculated in the diffusive and the convective terms of the 
conservation equations, respectively. For more details 
and discussions about these functions, reader can see 
[Prakash, 1986; Hookey, 1989; Elkaim et al., 1991]. 
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Using the Green-Ostrogradsky theorem, integration of the 
divergence term in the x-momentum Equations (4) over 
the control volume surrounding node P gives: 
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Equation (3). Equations (23) and (24) can be rewritten as 
follows: 

 
 

divJ 
 

dV   J 
 
.n dS 

 ~ u 
 
P 

 

 
u u (21) uP   uP  BP  

 

        x  

        
 

VP   S    (26)    
 

            
S is the surface area of the control volume VP 
surrounding the node P, and n is a unit outward normal to 
the differential surface area dS. From figure 3, Element 
PAB has two faces ag and gb bounding the control 
volume around P. The contributions of these two surfaces 

to the flux of vector Ju in two dimensional flows is given 
by: 
 

 J 
u 
.n dS  

g
 J 

u1 
.n  J 

u 2 
.n 

2 
 dl  

 

   a  1     
 

               

S               (22)                 
 

    
bJ 

u1 
.n  J 

u 2 
.n 

2 
 dl 

 

   g 
 1     

 

              
  

Jui and ni (i = 1, 2) are the components of vectors Ju and 
n, respectively. Using Simpson’s rule, integrals of  
Equation (22) are easily evaluated. The same treatment 
for all faces in all elements neighboring the node P is 
carried out. The other terms in Equation (4) are globally 
integrated over the entire control volume around node P. 
after space integration, integration in time is necessary. 
Collecting and simplifying, the discretised x-momentum 
equation is given by: 

 
 

~ v 
 

P  
 

vP   vP  BP y (27) 
 

     

 
~ ~  u  v  
uP , vP , BP and BP are called the pseudo-velocities  
components and the pressure gradient coefficients, 
respectively. They are given by: 
 

  Anb
u
unb  

uP
0
VP   

 

~     
 

  nb   
 u

P  
      

(28) 
 

  A
u
    

 

    P     
 

  
 Anb

v
vnb  

vP
0
VP    

 

~     
 

  nb   
 

vP  
     

(29) 
 

  A
v   

 

    P     
 

B
u
    VP    (30)  

 

A
u
 

   

P       
 

   P     
  

AP
u
 uP    Anb

u
unb  VP  

P 
 

uP
0
VP 

(23) v 
 

VP 
 

 

    
 

nb  x    BP  A
v (31) 

 

         

        P  
  

Subscript nb refers to all nodes neighboring node P,  uP
0
  

refers to the value of uP at last time and    P is the 
 

     x  
 

average value of  
 
P  

acting over the entire control     

     

   x     
  

volume surrounding the node P and evaluated by 

assuming a linear variation of pressure.  is the 
dimensionless time step. Similarly, conservation 
Equations of y-momentum (5) and energy (6) are 
integrated and written in the same form as Equation (23): 

 
By using these equations, pseudo velocities and pressure 
gradient coefficients can be calculated at all nodes of the 
domain.  

The integration of mass conservation Equation (3) over 
the control volume corresponding to the pressure is given 
by: 
 
  u  v    u  v  (32) 

 

    dV  V      
 

    P      
 

VP  x  y    x  y   
 

The symbol  denotes the  average value  over  the 
  

AP
v
 vP    Anb

v
vnb  VP    

P 
 

vP
0
VP 

 

y   

nb    
 

AP
T
 TP   Anb

T
TP   

TP
0
VP     

 

    
 

nb    
 

 
entire  control  volume.  Following  Saabas  and  Baliga  

(24) [1994] and Patankar [1980] in assuming a linear variation 
of u and v components in the treatment of the pressure 
equation, and substituting Equations (28) and (29) into 
equation (32), the mass conservation equation yields to   

(25) the discretised equation for pressure, written in the 
following form:  

 
The  pressure,  which  has  not a proper  equation,  is P 

PP 
P 

 b 
P (33) 

 

specified  through  satisfaction of mass  conservation AP 
  

A
nb 

P
P   

 

  nb    
 



Omar et al.              096 
 
 
 

Table 1. Used numerical parameters for various Prandtl number. 
 

Pr 
Grid size Dimensionless Time step 

 

(points) time: t t  

 
  

0.071 51×51 5.10
-3

  5.10
-4

 
 

0.71 51×51 5.10
-3

  5.10
-4

 
 

1 51×51 5.10
-3

  5.10
-4

 
 

7.1 51×51 5.10
-3

  5.10
-4
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     Pr=0.071 
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Pr=0.71  
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   Temps  
 

 
Figure 4. Dimensionless entropy generation versus time for 

different Prandtl numbers at Ha = 0 and GrT =10
5
; α = 0°. 

 
 

b
P
 denotes the source term arising from pseudo-velocity 

fields. At each time step, velocity and temperature are 
calculated, and then pressure equation is evaluated to 
calculate corrected velocity components and other 
scalars (that is temperature). Before going to a new outer 
iteration, the imposed convergence criteria given by: 
 

u  v  104 

,
 
 

 tt 
 t  

 
(where  = u, v, T) should be 

 

  
 

x  

y  

max    

  10
5  

   

 tt   

           

            
 

             
  

satisfied. The known velocity and temperature fields 
provide the calculation of local irreversibility at each time 
step. 
 
The above equations are resolved by applying the 
SIMPLE algorithm of Patankar [1980]. The SIMPLER 
algorithm and the SIMPLEC approximation of Van 
Doormal and Raithby are used in conjunction with an 
Alternating Direction Implicit (ADI) scheme for performing 
the time evolution. The used numerical code, written in 
FORTRAN language, was described and validated in 
details in Abbassi et al. [2001; 2001]. 
 
 
Code validation test 
 
Results shown in the following section have been 
calculated  by    taking   into   account  the inSitial and the 

 

 
boundary conditions given above. Table 1 shows the 
used grids (that is sizes), the dimensionless times as well 
as the time steps that are found sufficient to reach the 
steady state situation and the imposed convergence 
criteria.  

Parameters in table 1 are found to be valid for thermal 

Grashof number ranging between 10
3
 and 10

5
. In figure 

4, we demonstrate the value of transient entropy 
generation in natural convection for different values of 

Prandtl number. In this figure, the graphs are for GrT = 

10
5
, while value of the magnetic field is zero (Ha = 0). 

Entropy generation quickly passes from a minimum value 
at the very beginning of the transient state towards a 
maximum value, and then exhibits an oscillatory behavior 
before reaching a constant value in steady state. Entropy 
generation amplitude increases with the increase of the 
Prandtl number value. It is seen that the numerical values 
of S reach their respective steady values long before the 
time t = 0.25. However, in the present computations, we 
have taken the value of t = 0.25.  

The established numerical code was validated by an 
important physical parameter which is the Nusselt 
number. Table 2 summarizes a comparison between the 
calculated Nusselt number and that given in literature for 
different Prandtl number values.  

As it can be seen from table 2, the obtained results are 
in good agreements with those obtained in literature. 
Maximum  relative  error  does not exceed 3.54% for Pr = 
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Table 2. Comparison of average Nusselt number for different values of Prandtl numbers in a square 

cavity with GrT =10
5
 and Ha = 0. 

 
 Pr Pesso and Piva [2009] Present study Relative error (%)  

 

 0.071   3.813 3.948   3.54  
 

 0.71   4.521 4.664   3.16  
 

 1   4.685 4.745   1.28  
 

 7.1   4.732 4.863   2.77  
 

5          
 

      Ha=0    
 

     30 Ha=10    
 

          

      Ha=25    
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(a)     (b)     
 

 
Figure 5. (a) Average Nusselt number and (b) Dimensionless total entropy generation versus Prandtl number 

for different Hartmann numbers: GrT =10
5
; α = 0°. 

 
 
 
0.071. 
 
 
RESULTS AND DISCUSSION 
 
Entropy generation in natural convection and in presence 
of an external horizontal magnetic field (that is α = 0°) is 
numerically studied for different fluids that are 
characterized by their Prandtl number ranging between 
0.071 and 7.1. The choice of Prandtl number values are 
based on realistic behaviors in many industrial processes. 
Thus, the lowest Prandtl number value (0.071) 
characterizes liquid metals and semiconductors, values of 
Prandtl number ranging between 0.71 and 1 characterize 
gases and electrolyte solutions, and the value of Prandtl 
number equal to 7.1 characterizes water liquid. The 
independent operating parameters of the problem are: 
the thermal Grashof number, the irreversibility distribution 
ratios and the Hartmann  
number. They are in the following ranges: 10

3
 ≤ GrT ≤ 10

5
, 

10
−7

  f  10
−4

 and 0  Ha  100. For all the studied  
thermal Grashof numbers, grid of size 51 × 51 nodal 

points with a time step t = 10
−4

 are found sufficiently 
enough to achieve the steady state and to fulfill the 
imposed convergence criteria mentioned above.  
Prandtl  number  is   especially  applied  for  heat  transfer 

 
 
 
investigation and it comprises some fluid properties. The 
Prandtl number is a dimensionless number defined as the 
ratio of kinematic viscosity to thermal diffusivity. The 
Prandtl number can be related to the thickness of the 
thermal and the velocity boundary layers, as it is known 
as the ratio of velocity boundary layer to thermal 
boundary layer. When Prandtl number is small, it can be 
noticed that the heat diffuses faster compared to the 
velocity and therefore the thickness of the thermal 
boundary layer is much higher than the velocity boundary 
layer. 
 

 
Influence of Prandtl number on heat transfer and 
entropy generation in presence of a magnetic field 
 
In order to investigate the influence of Prandtl number on 
both heat transfer and entropy generation, figure 5(a) 
illustrates the variation of Nusselt number with Prandtl 
number. As it can be seen, Nusselt number increases 
with Prandtl number for different values of Hartmann 
number. Higher values of Prandtl number (that is Pr < 
0.71) induce the increase of heat transfer (Nusselt 
number). However, heat transfer is relatively insensitive 
to Prandtl number values ranging between 0.71 and 1. At 
higher   values   of   Hartmann  number (that is Ha = 100), 



Omar et al.              098 
 
 
 

60     80     
 

     60     
 

40          
 

Umax Ha=0    Vmax Ha=0    
 

          

 Ha=10    40 Ha=10    
 

 Ha=25     Ha=25    
 

 Ha=50     Ha=50    
 

20 
Ha=100    

20 Ha=100    
 

        

     0     
 

0.01 0.10 Pr 1.00 10.00 0.01 0.10 Pr 1.00 10.00 
 

(a)     (b)     
 

 
Figure 6. (a) Maximum x-component velocity (b) Maximum y-component velocity versus Prandtl number for 

different Hartmann numbers: GrT =10
5
; α = 0°. 

 
 
 
Prandtl number values greater than 1 induce a slight 
increase of Nusselt number. In the present configuration, 
the relative strengths of inertial, viscous, magnetic and 
thermal forces determine the flow behavior. For small 
values of Prandtl number, the thermal boundary layer 
thickness remains much greater than the hydrodynamic 
boundary layer thickness. As a result of this difference, 
the transport behavior in the majority of the domain is 
governed by the inertial and the thermal forces. For 0.71 
≤ Pr ≤ 1, the hydrodynamic and the thermal boundary 
layer thicknesses are competitive, then the transport 
characteristics are primarily driven by thermal and 
viscous forces. For Pr > 1, the thermal boundary layer 
thickness decreases as compared with the hydrodynamic 
boundary layer thickness. This change essentially acts to 
increase the heat flux which is reflected by the increase 
of Nusselt number. When Pr > 0.71, a change in Prandtl 
number principally modifies the relative balance between 
viscous and thermal forces, so the heat transport in the 
thermal boundary layer gets only marginally influence. 
This modification is reflected by the weak Prandtl number 
dependence of Nusselt number for moderate and large 
values of Prandtl number. Flow characteristics domain 
can therefore be divided into three regions: region I (that 

is Pr < 0.71), region II (that is 0.71  Pr  1) and region III 
(that is Pr > 1).  

Figure 5(b) shows that, for any fixed Hartmann number, 
entropy generation increases in the first region, and then 
slightly increases in the second region and the third 
region. It could be noticed that entropy generation 
considerably increases in the third region at higher values 
of Hartmann number (that is Ha ≥ 50), since entropy 
generation is mainly due to the magnetic effects in this 
region. For any fixed Prandtl number, figure 5(b) shows 
that the magnetic field induces the decrease of entropy 
generation by reducing the flow according to the resistant 

 
 
 
effect offered by Lorentz force.  

As an important conclusion, entropy generation 
increases with the Prandtl number, heat transfer depends 
on both the Prandtl number regions and the Hartmann 
number; it is more sensitive to smaller values of Prandtl 
number. The presence of the magnetic field plays an 
important role in decreasing the heat transfer flux (from 
Ha = 0 to Ha = 100, as illustrated in figure 5(a)). As a 
consequence, the heat transfer irreversibility decreases 
as well as the viscous entropy generation, inducing the 
decrease of total entropy generation. This is an important 
result, since the decrease of Nusselt number via the 
increase of Hartmann number for different values of 
Prandtl number is of great interest in entropy generation 
minimization in such a process. 
 

 
Influence of Prandtl number and the magnetic field 
on velocity profiles 
 
To explain the results, figure 6 a and b illustrates the 

behaviors of maximum velocity components, umax and 

vmax, umax velocity component decreases in the first 
region (that is 0.071 ≤ Pr < 1) for low magnetic field effect 
(that is Ha ≤ 25).  

For higher Hartmann numbers (that is Ha > 25), a 

reversed trend is observed. vmax velocity component 
increases with Prandtl number for all studied values of 
Hartmann number. No significant effects of Prandtl 

number on both umax and vmax profiles in region III (that is 
Pr > 1) have been reported. The increase of Hartmann 
number (that is the magnetic field) weakened the velocity 
components intensity for all the studied Prandtl numbers. 
This observation agrees with Hossain et al. [2005], where 
it is observed that the fluid velocity decreases with the 
increase of a horizontal applied  magnetic  field for a fluid 
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Figure 7. Midsection x-component velocity at x = 0.5 for different Prandtl numbers (a) Ha = 0 (b) Ha = 
 

100: GrT =10
5
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Figure 8. Isotherms, streamlines and isentropic lines for Ha  
= 0 with different values of Prandtl number for α = 0°; GrT 

=10
5
. 

 
 
 
characterizing liquid metals and semiconductors (Pr = 
0.054). Mid-section x-velocity component for two extreme 

 
 
 
values of Hartmann number at different Prandtl numbers 
is illustrated in figure 7. The magnetic field has to reduce 
the flow velocity in the cavity by comparing medium 
velocities in absence (see figure 7(a)) and in presence of 
the magnetic field (figure 7b).  

Prandtl number has a very small effect on the strength 
of the convection and the rate of heat transfer, especially 
for values greater than 0.71. However, at very small 
values, Prandtl number has some effects. On the other 
hand, Prandtl and Hartmann numbers are found to have 
a strong effect on the stability of the solution. Thus, the 
flow stability increases with Prandtl and Hartmann 
numbers. 
 

 
Temperature, flow and irreversibility localization and 
velocity distribution 

 
Figures 8 and 9 depict isothermal, streamlines and 
entropy generation charts for two Hartmann number 
values, Ha = 0 and Ha = 100 for different values of 

Prandtl number in natural convection at GrT = 10
5
. In 

absence of the magnetic field, entropy generation lines 
are localized on regions close to the end active and 
adiabatic walls for small Prandtl numbers, and are 
confined on lower heated and upper cooled walls of the 
cavity for higher values of Prandtl number. Streamlines 
show two recirculation cells, the size of the primary 
recirculation region increases, showing domination of the 
convection mode on the heat transfer. Thus, the portion 
of the enclosure being affected by the heated wall 
becomes larger, while the size of the secondary 
recirculation region decreases with the increase of 
Prandtl number. The length of the recirculation region 
increases as the Prandtl number increases. The large 
region that is associated with a smaller Prandtl number 
indicates the relatively strong thermal conduction mode in 
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Figure 9. Isotherms, streamlines and isentropic lines for Ha  
= 100 with different values of Prandtl number for α = 0°; GrT 

=10
5
. 

 
 
 
the fluid. These behaviors are consistent with the 
previous observations. Thus, low Prandtl number fluids 
are more affected by the force owing to the large thermal 
conductivity. The isotherms illustrate the temperature field 
in the separated flow region; isotherms tend to be 
horizontally parallel corresponding to conduction mode in 
fluid flow circulation. The Prandtl number is found to 
decrease the temperature of the flow field at all points. 
This result agrees with Kim [2000], where it is found that 
the increase of Prandtl number induces the decrease of 
the temperature field and the temperature boundary layer 
and it is accompanied with a more uniform temperature 
distribution across the boundary layer. The wall 
temperature decreases with increasing Prandtl number, 
and low Prandtl number fluids reach the fully developed 
state at smaller stream wise locations than fluids with 
higher Prandtl numbers. As Hartmann number increases, 
amplitudes of isentropic lines decrease due to the 
decrease     of   temperature   and   velocity   gradients as 

 
 
 

 
indicated by isothermal lines and streamlines. In this 
case, entropy generation lines move from adiabatic walls 
to the whole of the cavity for small Prandtl numbers, the 
amplitudes of isentropic lines decrease as Prandtl 
number become more and more important. Maximum 
irreversibility occupy the bottom left and the upper right 
corners of the enclosure.  

The effect of Prandtl number on the velocity 
distributions is depicted in figure 10 (a-b) at Ha = 0 and 
100. For high Prandtl number (Pr = 7.1), the velocity 
distribution provides a very thin thermally affected region, 
causing the thermal effect to be confined to this thin 
region adjacent to the heated wall. For this reason, the 
velocity profile for higher Prandtl number fluids 
approaches the forced convection mode. For fluids with a 
smaller Prandtl number, the thermally affected region 
expands from the heated wall to the cold wall and so 
does the region that is affected. For example, the case of 
the flow with Pr = 0.071. 
 
 
Conclusion 
 
Influence of the Prandtl number on entropy generation, 
heat transfer and fluid flow in natural convection in 
presence of an external magnetic field through a square 
cavity, is numerically investigated using the Control 
Volume Finite-Element Method (CVFEM). For relatively 

higher thermal Grashof number (GrT = 10
5
), results show 

that total entropy generation increases with the increase 
of the Prandtl number, heat transfer depends on the 
Prandtl number region; it is more sensitive to low values 
of Prandtl number. The Prandtl number induces the 
increase of heat transfer, but it causes the decrease of 
the wall friction coefficient. The presence of a magnetic 
field tends to reduce entropy generation where the 
system passes from an oscillatory behavior describing 
non linear branch of irreversible processes towards an 
asymptotic behavior showing the linear branch of 
thermodynamics for irreversible processes. Prandtl 
number has a very small effect on the strength of the 
convection and the rate of heat transfer, especially for 
values of Prandtl number greater than 0.71. However, for 
very small Prandtl number values, Prandtl number does 
have some effect. On the other hand, Prandtl and 
Hartmann numbers are found to have a strong effect on 
the stability of the solution procedure, the stability 
increases with these numbers. At local level and in 
absence of the magnetic effect, entropy generation is 
localized on regions close to the end active and adiabatic 
walls for lower Prandtl numbers and is confined on lower 
heated and upper cooled walls of the cavity for higher 
values of Prandtl number. As Hartmann number 
increases, amplitudes of isentropic lines decrease due to 
the decrease of temperature and velocity gradients. 
Entropy generation lines move from adiabatic walls 
towards    the   whole  cavity for smaller Prandtl numbers, 
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Figure 10. Velocity vector distribution for minimum and maximum values of Prandtl number  
(a) Ha = 0 and (b) Ha = 100: GrT =10

5
; α = 0°. 

 

 
and towards the bottom left and the upper right corners of 
the enclosure, when Prandtl number becomes more 
important. 
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Nomenclature  
B magnetic field (T)     

 

Cp 
specific heat (J∙Kg −1 

K −1 
)  

 .  
 

g gravitational acceleration (m∙s
−2

) 
 

GrT thermal Grashof number  
 

H (L) height (length) of the cavity (m) 
 

Ha Hartmann number     
 

Nu Nusselt number     
 


 s , dimensionless local entropy generation 

 

S dimensionless total entropy generation 
 

P pressure (kg∙m
−1

∙s
−2

)    
 

P’ dimensionless pressure  
 

Pr Prandtl number     
 

* 

local volumetric entropy generation (J∙m
−3

∙s
−1

∙K
−1

) 

 S
g en 

 

T dimensionless temperature 
 

T’ temperature (K)     
 

t dimensionless time    
 

t’ time (s)     
 

Th’ hot side temperature (K)  
 

T’c cold side temperature (K) 
 

T’0 bulk temperature (K)    
 

U* characteristic velocity (m∙s
−1

) 
 

V dimensionless velocity vector 
 

V’ velocity vector (m.s
-1

)    
 

u, v dimensionless velocity components 
 

u’, v’ velocity components along x’ and y’, respectively (m∙s
−1

) 
 

x, y dimensionless coordinates 
 

x’, y’ Cartesian coordinates (m) 
 

 
Greek Symbols  

α 


T 
βT  
 f 
 B  
μ  
ρ  
σe  
υ  
ΔT’ 

 
magnetic field’s angle with horizontal direction 

(°) thermal diffusivity (m
2
∙s

−1
)  

thermal expansion coefficient (K
-1

) 
 
friction irreversibility distribution ratio 
 
magnetic irreversibility distribution ratio 
 
dynamic viscosity of the fluid 

(kg∙m
−1

∙s
−1

) fluid density (kg∙m
−3

)  
electrical conductivity (Ω

−1
∙m

−1
) 

kinematics viscosity (m
2
∙s

−1
) 

temperature difference (K) 
 


