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This work investigates the effect of magnetic field, on the stress coefficient and the vorticity of a pulsatile 
flow, electrically conducting in a cylindrical conduit. The imposed magnetic field is supposed to be uniform 
and constant. An exact solution of the equations governing pulsatile MHD flow in a conduit has been 
obtained in the form of Bessel functions. The analytical study has been used to establish an expression 
between the Hartmann number and the stress coefficient and the vorticity variation. The numerical method 
is based on an implicit finite difference scheme using the Thomas algorithm and Gauss Seidel iterative 
method. The velocity distributions, as well as the stress coefficient and the vorticity were obtained both with 
and without a magnetic field. The results show that the amplitude of the vorticity increases as the Hartmann 
number increase. The effect of the magnetic field is significant only from Hartmann number M=5.The stress 
coefficient increases with the Hartmann number due to a dephasing compared to the imposed flow which 
increases considerably starting from Hartmann number M=10 to reach a value around 45°C. 
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INTRODUCTION 
 
The study of the fluids that exhibit oscillatory flow have 
various important application in nature, common 
examples in medical sciences included; blood flow 
through an artery, peristaltic food motion in the intestine, 
motion of urine in urethra. In astrophysics and 
geophysics, it is applied to the study of stellar structure, 
coresterrestrial and solar plasma. Vardanyan et al. [1973] 
have developed several theoretical models on the effect 
of a magnetic field on pulsatile flow. They noted that the 
presence of a constant and uniform magnetic field 
decreases the rate of flow; their work had a significant 
impact on biological research. Sudet al. [1974] studied 
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the effect of the magnetic field on the sinusoidal flow of 
fluid in a rigid conduit. They obtained the dimensionless 
velocity profile. Seume and Simon [1988] present an 
expression for the dimensionless stress coefficient of 
which the amplitude and phase shift are functions which 
increase with the dimensionless frequency .With 
regard to the phase shift they note that it varies from 0 to 
45°C. Amos and Ogulu [2002] conducted a numerical 
study, on the pulsatile flow in a conduit with a constriction 
in the presence of an external uniform magnetic field. 
When the magnetic field increases, the speed decreases, 
and the only way of circumventing this problem of speed 
reduction is to increase the flow pressure, which 
corresponds to the increase in the work load of the heart 
which can lead to heart attacks. Ikbaland Mandal [2008] 
studied the unstable  response  of  non-Newtonian   blood 
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Figure 1. Geometry of the physical system. 

Figure 1. Geometryof the physical system. 
 
 
flow through an artery with a stenos in the presence of a 
magnetic field. The magnetic field is the main cause of 
reduced flow. Majdalani [2008] obtained the analytical 
solution for the evolution of the velocity profiles and the 
stress coefficient in the case of a pulsatile flow by 
Adesanya [2005]. studied the effect of couple stresses on 
an unsteady magneto hydrodynamic (MHD) non-Newton 
in flow between two parallel fixed porous plates under a 
uniform external magnetic field using Eyring-Power 
model; they reported that the flow is damped with 
increasing effect of couple stresses. 
 
 
FORMULATION OF THE PROBLEM 
 
Consider the pulsatile flow of an incompressible viscous 
fluid in a cylindrical conduit of radius R and length L, i n  
the presence of a transverse uniform magnetic field B0 ,  
(Figure  1). 

  

represents  the  total magnetic 
 

B  B0  B1  

    

neglected  field and B  the induced magnetic field which is 
 

1     
  

compared to the external magnetic field. The fluid is 
pulsed at the inlet of the conduit along the axiswith a  
periodic axial velocity We, pulsation  and 

 

amplitude given by: We   Wm 1  A e 
jt

  .  

       
The fluid is supposed to be laminar, incompressible and 

all physical properties are assumed to be constant, the 
fluid is Newtonian and the external forces called the 
Lorentz electromagnetic force, due to the presence of the 
magnetic field are expressed after neglecting gravity for 
reasons of axial symmetry of the problem, in the following  
    

way: F  J  B  J represents the current density due  
to the movement of the conductive fluid in the presence 
of the magnetic field, and according to Ohm’s law we 

have: 
     

Therefore 
  

 

J   (E V  B) . F   B
2
 V .  

   

the 
     

 

 represents electrical  conductivity, E represents 
  

the electric field which is considered as negligible. Given 
all the assumptions described above and after projection 

 
 
of the equations on to cylindrical coordinates (r, z).  

The equation governing the flow studied is reduced to: 
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MATHEMATICAL ANALYSIS 
 
Using the following dimensionless variables: 
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z   z , 
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Where (U, W), (r, z), t, P are the velocity coordinate, 
cylindrical coordinates, time, and the pressure.  
Re is the Reynolds number and M the Hartmann number, 

defined as follows: 
Re  
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Therefore, the equation of motion, governing the 
considered phenomenon can be written as follows: 
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Boundary conditions                  
 

  At the entrance of the conduit z = 0       
 



 
 
 
 

Wr,0, t   1  A e 
jt

  
 
Ur,0, t  0 
 

At the exit z = L/R W  L   U  L   on the 
 

 

r,  , t   r,  , t   0    
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  At the wall of the conduit r = 1 W1, z, t U1, z, t 0 
 
 
Analytical study 
 
In addition to the previous simplifying assumptions, we 
suppose that the flow occurs only in the axial direction. 
Under these conditions, the conservation equation 
governing the pulsated flow is as follows: 
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The velocity field is expressed as follows: 
 
W (r, t)  W0 (r)  W1 (r, t) 

 
W0 (r) and W1 (r, t) represent respectively the stationary and 

non-stationary part of the velocity. 

 
Study of the steady state 
 
The dimensionless equation to be solved in the stationary 
case is: 
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2
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The solution of the homogeneous equation is written in 
the form: 
 
W0 (r)  C1I0 (M.r)  C2 K0 (M.r) (5) 

With: A0 Re as   a   particular solution   and   solution 
 M 2   
and I0 , K0 are modified Bessel functions of the first and the 

second kind of order 0. C1 , C2 are constants calculated from 

the previous boundary conditions. We then find: 
 
  A0 Re   I0 (M .r)  (6) 
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Study of the not stationary state 
 

To characterize the  oscillatory  flow,  we  include  the 
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dimensionless frequency R and we use dimensionless 
 

e     
 

variables of timet
*
  t , where: R  
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square of the Womersley number Re   
2
 . In this case it  

is the gradient of pressure which generates the flow. 

Under these conditions, the dimensionless velocity profile 
can be put in the form:W1 (r,t)  Re( f (r)e

it )  
The dimensionless equation to solve in the non-stationary 
case is: 
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The solution of the equation without second term  fs (r) is  
written            in         the   form: 
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as the particular solution. 
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 The constant C2 is set equal to zero because the velocity 
 

cannot be  infinite  at  r  0. C1 , is determined  by  the 
 

condition of zero velocity at the wall expressed by 
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We obtain the expression of the dimensionless velocity: 
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We deduce: 
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This is the same expression found by Bouvier [2005] for 
the velocity profile of an oscillatory flow in the absence of 
a magnetic field. 
 
 
Study of the pulsatile state 
 
The expression of the dimensionless velocity pulse is the 
superposition of the stationary component and the 
oscillatory component. 
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The dimensionless stress coefficient at the wall is 
calculated from the previous expression: 
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Calculation of the stress coefficient 

 
Direct calculation of the stress coefficient is not possible 

from the equations governing the flow, which led us to 

use an indirect method involving the balance of forces in 

a volume element of fluid commonly used in such studies. 

If we considerthe flow ofan incompressible fluidwith a flow 

velocity in a cylindrical conduit in the presence of a 

magnetic field, we can write for a given volume element, 

the equation of balance forces acting on it as follows: 
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The expression of the stress coefficient is then: 
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Equation 8 can be written using the previous 

dimensionless variables, adding the dimensionless 

variable C f normalized called normalized stress coefficient as 

follows: 
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Figure 2.   The    C f normalized as    a    function    of    Reω    for    different    Hartmann    numbers  
(a) Current study (b) Seume and Simon (1988) result. 

 
 
 
In the absence of the magnetic field 
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We find the same expression given by Seume and Simon 
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Numerical study 
 
The discretization of the above equations using a finite 
difference implicit method used by Ghezal [2007] leads to 
a system of algebraic equations which were solved using 
an iterative Gauss-Seidel technique with a relaxation 
coefficient.  

Figure 2a shows that the maximum amplitude of the C f 

normalizedin the absence of magnetic field (M= 0), increases 

with frequency to about 10times its value in the case of 
steady flow. These results are consistent with those 
obtained by Seume and Simon [1988], Figure (2b). However 
there was a slight increase for low frequencies. This can be 

justified by the contribution of the second component of the 
velocity. The frequency effect is appreciable for frequencies 

Re between 100 and 150,  
which corresponds to the initiation of the ring effect. 
 
 
RESULTS AND DISCUSSION 
 

The C f normalized is approximately equal to 1 for low 

frequencies Re <100, which corresponds to the case of 
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magnetic  field  and  for  Re  →  0.In  fact;  the  limited 
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In the presence of the magnetic field C f normalized 

increases with the Hartmann number for a given 

frequency, the maximum amplitude varies as a function 
of the frequency from Re  

>100.  
  

Another important result is that the variation of C f 

normalized in the presence of the magnetic field is less 
dependent on frequency as the Hartmann number 
increases. The variation becomes totally independent of 
frequency for values of Hartmann M>20.The expression  
of the C f normalized as a function of time is given as follows: 

 

                   

             i 2      

                 

     

M 2  
i 2           

         

2     

      
1  

   

 
   

eit 
 

               

C   (t)            
 

              

f               

         

 2I1 (.) 
  

  

 normalized   8   8    
 

        

1 
 

          

      

  

          

I 0 ( ) 
 

              
 



Mohammed and Cheb         022 
 
 

 
  30       

 

    M=200     
 

C 
 

20  M=100 Re  900 
  

 

      

      
 

f n 
  M=50     

 

        

   

M=20 
    

 

  10 M=10     
 

  0       
 

 

C
o

e
ff

ic
ie

n
t 

   M=0   
 

 - 10       
 

        
 

  - 20       
 

  - 30 
0 90 180 360 450 540     

 

     Period   
 

 
Figur 3. CFiguref 3: Cas a functionasafunctionoftimeoffortimedifferentfodifferentHartmannHartmannnumbers fornumbersahigh andvaluea ofhighReωvalue. of Reω. 

normalized f n 
 

 
 90                 

 

 90    Déphasage de C f ( Re )     
 

             ( Re )  

      Déphasage de C 
f  

 80               
 

    

Déphasage de C   

( M )       

 80         ( M )  

      Déphasage de C    

         f    f   
 

                 

 7070                 
 

(° ) 

60                 
 

f 

                
 C

 

60                 
 

( ° ) 

                  

d e f 

50  (b)               
 

C
 

   

(a)             

s h
i

ft
 

50  (b)  
(a)            

 

               

                
 

40                 
 

                  

D
ép

h

as
ag

e 

40                 
 

30                 
 

                 
 

P h a s e 

30                 
 

 20                 
 

 1020                 
 

 0                 
 

 10 100 200 300 400  500     600 700  
        

 0   M, Re             
 

                  
 

  100 200 300 400 500 600    700  
 

Figure 4. The variation of the phase shift of as a function of Hartmann numbers 
M,C Ref

 
normalized  

and the frequency Reω. 
 

 
The variation of this magnitude for different Hartmann 
numbers is given in Figures 3 and 4. From this curve, it is  
found that C f normalized is sinusoidal and increases with 

Hartmann number without dephasing at low values of 

Re .  
The  influence  of  magnetic  field  on  the  dephasing  

(phase shift) of the  C f is of the same nature as 
  normalized 
that  of  the frequency, these  results  are  in  good 
agreement with those found by Bouvier [2005]. 
 

 
Influence of Hartmann number on the stress 
coefficient 
 
From (14), it is found that the stress coefficient is 
sinusoidal   and   it   increases   with   the  increase of the 

 

 
Hartmann number causing a dephasing which greatly 
increases from M = 10 to reach a limit value around 45 °. 
It should be noted that these results are consistent with 
those obtained analytically and can therefore be used in 
the validation of our numerical code. 
 
CALCULATION OF THE VORTICITY 
 
Dimensionless vorticity is given by: 
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After simplification, the final expression of the vorticity is 
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Figure 5. Radial profile of the vorticity (M


0, Reω=10, A=50). (a) Current study, (b) Results of Majdalani [2008]. 
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Figure 6. Radial profile of the vorticity (Reω=10,A=50)(a) M


0, (b) M =5. 
 

 
given as follows: 
 
 A R  I (Mr)  A 2  I (.r)   

     

 0e 1      1   e
it  

          

 

M   I 0 (M ) 

 

 

  

I 

  
 

    0 ( )  
  

Where: A0 represents  the  amplitude  of  the  stationary 
 
part. A represents the amplitude of the oscillatory part. 
The vorticity is plotted using MATLAB as a function of 
radius r for different values of Hartmann number and 
frequency for different phases and for different ratios of 
amplitudes. 
 

 
For a low Hartmann number and high amplitudes (A = 
20, A = 50) 

 
The influence of the amplitude is shown in Figure 5. The 
results indicate that the values of the vorticity are higher 
than the amplitude values. By comparing our results with 

 

 
those found by Majdalani [2008], on the purely oscillatory 
flow in the absence of magnetic field, for an amplitude A 

= 50 and frequency Re  10 , we note that they are in  
good agreement. 
 

 
For a high Hartmann number and high amplitudes 
(A=50) 
 
Figure 6 Shows the effect of magnetic field on the radial 
profile of vorticity. We note that the magnitude of the 
vortices is higher when the Hartmann number is high. It 
should be noted that the effect of the magnetic field is 
significant only from M=5. It is noted that the vorticity 
takes negative values for certain phases for different 
amplitude values indicating the presence of a return flow. 
 
 
Conclusions 
 
In  this  work  we  have  calculated  the  stress  coefficient 
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based on the one-dimensional case used in some works, 
because the calculation in the case of bi-dimensional 
unsteady flow presents some difficulties due to the 
change of sign of the velocity value over a cycle. This 
also allows the detection of the phase shift between the 
stress coefficient and the flow velocity without much 
difficulty. The analytical study has permitted us to 
establish expressions reflecting the velocity profile, the 
variation of the stress coefficient and vorticity as a 
function of Hartmann number. It has also shown that the 
stress coefficient has a sinusoidal aspect and it increases 
with the increase of the Hartmann number causing a 
phase shift which considerably increases from M = 10 to 
reach a limit around 45°C, and the amplitude of the 
vorticity are higher when the Hartmann number is high. It 
should be noted that the effect of magnetic field on the 
vorticity is visible only from M = 5. 
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