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Second generation wavelet based super resolution algorithms developed in this research are presented 
in this paper. Generalization of the Second generation wavelet super resolution (SGWSR) algorithm to 
handle arbitrarily irregular 2-D grids as opposed to the semi-regular grids handled in the previous 
algorithm is introduced. A consequence is the ability to incorporate the projective camera motion 
model into the framework. Simultaneous noise filtering with super resolution is achieves. The gene-
ralization to the arbitrary 2-D version is subsequently described. Simulation results which demonstrate 
the improved performance of the developed super resolution algorithms in comparison to other 
approaches are also presented. 
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INTRODUCTION 
 
The field of super resolution has seen a tremendous 
growth in interest over the past decade. High resolution 
images are crucial in several applications including medi-
cal imaging and diagnosis, military surveillance, satellite 
and astronomical imaging, and remote sensing. Const-
raints due to factors such as technology, cost, size, 
weight, and quality prevent the use of sensors with the 
desired resolution in image capture devices and cones-
quently, necessitate the design of superresolution algori-
thms to achieve the desired image resolution. The pro-
cess of image registration with respect to a reference 
frame results in a grid with irregularly spaced sampling 
points. Hence, the superresolution algorithm needs to 
handle irregular sampling (Bose et al., 2004).  

Unfortunately, most algorithms employ some means of 
approximating the irregularly sampled grid with a regular-
ly sampled one. This induces some error in the process 
of superresolution which is reflected in the output image 
quality (Bose et al., 2004).  

It is then reasonable to expect an improvement in per-
formance from a super-resolution algorithm which is 
capable of handling the irregular samples without appro-
ximations.  

The ability of second generation wavelets (Zayed et al., 

2006) to adapt to irregular sampling intervals rendered 
them an ideal starting point for this research. The addi- 

 
 
 
 

 
tional property of handling arbitrary boundaries eliminates 
the need to assume and impose assumptions like the 
zero, periodic and Neumann boundary conditions and 
enhances the probability of obtaining better results from a 
superresolution algorithm based on second gene- ration 
wavelets. The possibility of achieving simultaneous noise 
reduction by the use of wavelet coefficient thresholding 
provided an added incentive to delve deeper in this 
direction.  

Consequently, one of the main objectives of this re-
search was the development of algorithms based on sec-
ond generation wavelets for superresolution with the 
capability of simultaneous noise reduction.  

Blind deconvolution is an inverse problem with insuffi-
cient data. It is therefore desirable to exploit the extra 
information available in multiple frames in the superre-
solution problem. Among the many techniques available 
for blind deconvolution, few extend directly and easily to 
the multi-frame case. One of the best algorithms (in terms 
of performance and complexity) was the asymmetric 
iterative blind deconvolution (IBD) algorithm proposed by 
Biggs and Andrews (Vanraes et al., 2002; Starck et al., 
2002). But this algorithm relies on the assumption of a 
priori knowledge, or alternatively, trial-and-error estima-
tion, of the support of the blurring function and the asy-
mmetry factor for optimal performance. Other single fra- 



 
 
 

 
me approaches to blind deconvolution like the regulari-
zation based approach of Waheed and Mohammed 
(2006) include modules for estimating the support of the 
blurring function or PSF.  

The efficacy of the proposed enhancements is eviden-
ced by the presented simulation results. The organization 
of the rest of the paper is as follows:  

Section 2. Describe Pre-Processing; Section 3. Given 
Simultaneous Noise Filtering; Section. 4. SGW Super-
resolution on Arbitrarily Irregular Grids; Section 5. Intro-
ducing the Refinement Relations; Section 6. Describes 
Prediction and Update; Section 7. Given Algorithm; 
Section 8. Simulation Results. Finally, some conclusions 
are given in sec. 9. 

 
PRE-PROCESSING 
 
The quality of the super resolved HR image may be 
adversely affected due to the presence of one or a few 
input LR frames which have been either severely blurred 
or degraded by additive noise. In comparison to the 
remaining majority of the input LR frames, these severely 
corrupted frames do not contribute to the improvement in 
image quality that is sought by the superresolution 
algorithm. On the contrary, they degrade the quality of the 
generated HR image. Rejecting such frames from being 
used as inputs constitutes a simple pre-processing step 
to the superresolution algorithm which avoids unne-
cessary loss of reconstructed HR image quality. The 
identification of the ‘bad frames’ based on the frame 
variances was proposed in (Lertrattanapanich and Bose, 
2002) on an intuitive basis. The approach is also employ-
ed in this research and a simple mathematical justifi-
cation is also provided. Since LR frames contain a signi-
ficantly large common region of interest, it can be assu-

med that the variances of a set of LR frames, {fl}, should 

be reasonably close to one another. If an LR frame is 
severely corrupted by additive noise, its variance will be 
much higher than those of other acceptable LR frames. In 
contrast, if an LR frame is severely blurred, its variance 
will be much lower than that of other acceptable LR 
frames. 

 
Simultaneous noise filtering 
 
Image acquisition is usually subject to the degrading 
effect of noise corruption. Thus, the LR inputs to the 
superresolution algorithm are typically noisy. Most of the 
existing superresolution algorithms counter the input 
noise by including a separate denoising module that pro-
cesses the generated HR image. Examples of techni-
ques for denoising images range from simple averaging 
to more sophisticated methods documented in (Moayeri 
and Konstantinides, 1996). Though some of these techni-
ques are indeed very effective for denoising images, the 
opposed to the computational complexity of the imple-
mentation is considerably high. 

 
 
 

 
Since, in general, superresolution algorithms them-

selves are computation intensive, a denoising technique 
which can be incorporated with minimal increase in com-
putational complexity while providing reasonably good 
performance is desirable. The superresolution algorithms 
developed in this research (which are subsequently pre-
sented in Sections 4.3 and 4.4) involve the compu-tation 
of second generation wavelet coefficients. There-fore, the 
denoising technique based on wavelet coeffi-cient thres-
holding (Donoho, 1995) is selected since it allows simul-
taneous noise filtering with superresolution, thereby redu-
cing computation cost significantly in the overall frame-
work. It is important to note that thresholding in the SGW 
setting is much more challenging than in the FGW case 
since small coefficients may carry important information 
which is essential for a stable inverse trans-form (Moayeri 
and Konstantinides, 1996).  

The SGW based HR reconstruction methods simulta-
neously incorporate noise filtering by hard/soft threshold-
ing of wavelet coefficients defined, respectively, by the 
following expressions (Donoho, 1995): 
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Where d represents an SGW coefficient before thres-

holding and is the threshold. The response curves for  
the two thresholding schemes are illustrated in Figure 1. 
The efficacy of this process of thresholding relies on the 
decorrelating properties of the wavelet transform. Essen-
tially, if the random noise corrupting an image is 
uncorrelated with the image itself (which is the most 
common case), the application of a wavelet transform 
results in the noise being captured mainly in the wavelet 
coefficients. Soft thresholding yields better results as will 
be shown in simulations presented subsequently. 
 
 
SGW superresolution on arbitrarily irregular grids 
 
When camera motions more general and complex than 
translation (such as affine and projective) are considered, 
the resulting grid of registered LR samples is not semi-
regular. On the contrary, it is two-dimensionally arbitrarily 
irregular, an example of which is given In Figure 2. Achie-
ving superresolution over such arbitrary grids is more 
challenging and necessitates generalizations and modi-
fications to the algorithm were first proposed in (Waheed 
and Mohammed, 2006). The ability to handle arbitrarily 
irregular grids or sampling lattices results from the use of 
2-D prediction and update operators as opposed to the 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Hard and Soft thresholding. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2a. 2-D arbitrarily irregular grid of registered LR 

frames 
 
 
 
tensor product of 1-D operators. 
 
 
Refinement relations 
 
Due to the Multi-Resolution Analysis (MRA) structure,  
there exist refinement coefficients {  j,t,k } and {  j,t,l   } 

 

at the j
th

 level such that   
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Where   j    and   j    are matrices whose rows contain 
 
coefficients in accordance with Equation (2). Dual scaling 

functions and wavelets also have similar refinement rela-
tions which can be expressed as 
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Where matrices j  and j   are  formed  similar  to 
 

matrices  j   and   j defined above.  
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Where represents the Hermitian operator. Thus, for any 

given sj , the forward wavelet  
Transform or analysis is given by 
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Pre-multiplying the two expressions 
in Equation (7) above 
by and respectively and adding  yields the 
 

expression for the inverse transform or synthesis as: 
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computed using the expressions     
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Figure 2b. Prediction step: analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Prediction step: synthesis. 
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j   j , j   j  j Pj
*
 (9) 

 (0)  (0)  (0)    

j    j   j Pj   , j j  (10) 
 
The above step is known as the prediction step and is 
graphically illustrated in Figures 2 and 3. As seen, 
Equation (9) corresponds to the analysis prediction step 
whereas.  
Equation (9) corresponds to the synthesis prediction step.  

  

Note: It is conventional to use   j and   j  to represent 

the  analysis  filters  and   j   and j   to  represent  the 
synthesis filters.  

Interchanging the roles of the primal and the dual 

MSDs in Equations (9) and (10) above, for any operator 
Uj , 
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This is termed as the update step. As before, Equation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Update step: analysis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Update step: synthesis 
 

 
(11) corresponds to the analysis side update step while 
Equation (12) corresponds to the synthesis side update 
step. These equations are depicted pictorially in Figures 4 
and 5. A point to be noted is that in the analysis side, the 
update step follows the prediction step and hence the 
initial filters for the update step are those which have 
already been processed by the prediction step. The 
converse occurs in the synthesis side since the prediction 
step follows the update.  

One commonly used choice for the initial trivial biortho-
gonal filter pair is given by the lazy wavelets transform 
which involves no computation but which has the formal 
properties of a wavelet transform. It involves a simple 
splitting or subsampling of the data into even (approxi-
mation) and odd (detail) indexed sets. This corresponds 
to the choice 
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where sj+1,0    is the scaling function  coefficient being 
 

predicted and N(sj+1,0) denotes the neighborhood of sj+1,0 

(set of points in the vicinity of sj+1,0 which satisfy a certain 
property). Elements belonging to this neighborhood are  
modified in the update step. Figure 6 illustrates the lifting 
scheme for this choice of initial filters. 

Since there are no restrictions on how the prediction 

neighborhood is chosen, the definition of the neighbor-
hood can be modified at the boundaries in such a manner 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Lifting scheme with the lazy wavelet as the starting step. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. Cubic polynomial prediction: unaffected by the boundary. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Cubic polynomial prediction: affected by the boundary. 

 

 
that assumptions in the form of boundary conditions are 
rendered unnecessary. For example, consider a cubic 
polynomial predictor. Since a cubic polynomial is uniquely 
determined by four points, the prediction neighborhood 
should include four points. Typically, two data points on 
either side of the point being predicted are used for the 
prediction, as illustrated in Figure 7. At boundaries how-
ever, two points may not be available on either side. In 
such cases, the prediction neighborhood selection can be 
modified to use the four nearest data points (for example, 
a single point on one side and three on the other side) to 
determine the predictor function, as illustrated in Figure 8. 
The outlined procedure clearly preserves the cubic recon-
struction property even at boundaries and is hence an 
appropriate choice for handling boundaries without impo-
sing boundary conditions. It should be noted that the 
neighborhood and the cubic polynomial curve remains 
the same, though the prediction coefficients will be differ-
rent, for the prediction of any point between the second 
and third samples from the left in Figure 8. Further, none 
of the aspects of the construction using the lifting techni-
que imposes a requirement for uniformly spaced data 
points. This flexibility in construction using the lifting 
technique enables SGWs to adapt to general settings like 

 

 
bounded domains and irregular samples. It should be 
noted that the use of asymmetric prediction neighbor-
hoods at boundaries tends to introduce a bias towards 
the interior values in the reconstruction (Vanraes et al., 
2002). The solution suggested in Vanraes et al. (2002) to 
overcome this problem is to enforce symmetric prediction 
neighborhoods at the boundaries by giving up some 
vanishing moments. 

 
PREDICTION AND UPDATE 
 
From the expression for the forward transform given in 
Equation (2), the detail or wavelet coefficient that replac-

es the scaling function coefficient sj+1,0 can be computed 
as follows 
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*
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Using the refinement relation in Equation (3) 
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For the initial filters given in Equation (5) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. 1-ring neighborhood of a point. 
 

 

dj,0 = sj+1,0 – Rj+1[N(sj+1,0)] (14) 
 
The generic 2-D setting allows the definition of a much 
larger variety of neighborhoods. Three types of neighbor-
hoods are illustrated in Figures 6, 7 and 8 with the point 
being predicted shown in bright blue in the center of the 
grid. The first, illustrated in Figure 6, is the 1-ring neigh-
borhood 

Which is defined based on the Delaunay triangulation 
(Okabe et al., 1992) of the registered irregularly spaced 
samples. The triangles shown in the figure are Delaunay 
triangles. The 1-ring neighborhood is thus the set of 
points whose Delaunay triangles contain the point being 
predicted. Further discussions in this paper assume a 1-
ring prediction neighborhood, though the concepts also 
apply to other types of neighborhoods. The definition of 
the 1-ring neighborhood can be easily generalized. A 1-
ring neighborhood with flaps is the union of the 1- ring 
neighborhood and the triangles filled with dark gray in the 
figure. Further larger neighborhoods such as the 2-ring 
neighborhood can be similarly defined.  

Another type of neighborhood can be defined based on 
a distance criterion and is shown in Figure 9. The 
neighborhood consists of all points which lie within a spe-
cified Euclidean distance from the point being predicted. 
The 1-ring and the distance based neighborhoods are 
generic in the sense that they are determined only by the 
locations of the samples and not based on the pixel 
values at the locations. The adaptive neighborhood 
shown in Figure 10 takes the pixel values also into 
account and achieves much better edge reconstruction.  

As a specific example of a prediction operator, consider a 
least-squares plane predictor. Consider the prediction of a 

point p0(x0, y0) and with pixel value z0. Let pk = 1, . . . 

, K, where K = ( ( N  1)( N  2) 
, be the points belonging  

2 
  

 

    
 

to the prediction based  neighborhood diction neighbor- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Distance-based neighborhood of point. 
 
 

hood, N(p0). Since a plane represents a first degree 

predictor (it is capable of reproducing all bivariate 

polynomials of total degree 1), the order of the dual MRA,  
N = 2.The predictor function can be written as 

 

z = a0 + a1x + a2y = [1 x y] (15) 
 
Where = [ 0 1 2]

T
 . Let w = [w1,w2, . . .,wK] be the vector of 

corresponding weights assigned to the points in  
the neighborhood. The vector of coefficients, , is deter-

mined from the points in the neighborhood by solving the 
system of linear equations, 
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The pairs of values (xk, yk), k = 1, . . . ,K are the  
coordinates of the N points p1, . . . , pK belonging to the 

prediction neighborhood with values z1, . . . , zK. The 

least-squares solution for is obtained as 
 

= M
*
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Where M

*
 is the Moore-Penrose inverse of the matrix M 

(the Moore-Penrose inverse is unique and exists for all 
matrices). If the points in the neighborhood are distinct 
and if all the points do not lie on a straight line, M 

T
 M is  

non-singular. Then, M
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weights, w, and the predicted value, z0 , at point p0(x0, y0) 

are given by:  
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The 1-ring neighborhood with flaps is not considered as a 
prediction neighborhood for the following reason: the sub-
pixel displacement assumption (which is valid and impor-
tant in multi-frame superresolution) usually results in a 
grid in which the flap points tend to be nearly collinear 
with some of the 1-ring neighborhood points. This then 

increases the computational complexity in determining M
*
 

since  (M 
T
 M )

1
 M 

T
 cannot always be employed due to  

the possibility of instability of the procedure. In such 
cases the Moore-Penrose inverse can be computed using 
the singular value decomposition (SVD) or the QR 
decomposition. All higher neighborhoods like the 2-ring 
neighborhood contain the 1-ring neighborhood with flaps 
as a subset and hence cause the same problem. As 
mentioned previously, the update step is necessary to 
ensure that a certain number of moments of the original 
signal are preserved in the approximations that are suc-
cessively generated. In the generic 2-D setting, the 
update operator is implemented based on the area of 
support of the scaling function as defined in [12]. For any 

given sj, the forward wavelet transform or analysis is 

given by 
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Stability of the wavelet transform requires that  
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That is, the wavelet should have at least one vanishing 

moment. This then yields the constraint 
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From equations (16) and (17) 
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Using Equation (17) 
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Since the update values affect the primal wavelet 
functions, it is desirable to keep them to small magni-  

(17) tudes (otherwise, the wavelet will be very close to the 
space spanned by the scaling functions at a coarser level 
leading to instability) [12]. Thus, a solution which satisfies 
the constraint and is of minimum norm is beneficial. For 
the constraint given in Equation (24), the minimum norm 
solution is   
uj,k = Al

2 (24) 
 

A
 j, k 

A
 j1,0  

 
lN(s

 j 1,0) 

And from equations (13) and (14)  ALGORITHM   
 

      
 

 s
 j,N(sj,0 ) 

=
 

s
 j1,N(sj1,0 )  

+ Uj+1dj,0
 (18) 

An algorithmic description of the process for obtaining a 
 

 super resolved image from an arbitrarily irregular sam- 
 

      pling lattice that results from the registration (using the 
 

The new lifted dual scaling functions can be obtained projective camera motion model) of a set of LR images 
 

based on SGWs and the lifting technique (Sweldens, 
 

using the refinement relation and the prediction equations  

1998) is presented in  this  section.  The algorithm 
 

as  
 

 

presented  represents  a  new  and  seemingly  natural  

      
 

      approach to superresolution. In addition, simultaneous  
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noise filtering by thresholding of wavelet coefficients is 
 

      implemented.   
 

Where w is the vector of prediction weights employed in Let fl, l = 1, 2,…, r,…,L represent the LR frames, where 
 

the computation of the detail coefficient in Equation (14). fr   denotes  the  reference  LR  frame.  The  coordinate 
 

Integrating the above expression considering every point system is defined with respect to fr. Let {pt(xt, yt)} denote 
 



  
 
 

 
the set of registered pixels obtained using a preselected 

subset, Lp, of the available degraded LR frames. Let fhr[k, ] 
denote the desired super resolved image which exists on a 
regular HR grid, the coordinates of which are defi- 
ned by the rows of a matrix M. The order,  

ˆ
  of subdi- 

N 
vision is determined by the bivariate polynomial of total 
degree ( 

ˆ
  −1) used for prediction and can be shown 

N 
[13] to correspond to the number of vanishing moments 
of the primal or synthesis wavelet. N, the number of 
vanishing moments of the dual or analysis wavelet  ˆ , is  
chosen in the update step. A closed form expression 
cannot be given for the dual and primal wavelets (unlike 
for some FGWs like B-splines) since, in the general 
second generation setting, wavelets are custom-built to fit 
the given samples, and hence are arbitrary. The steps of 
the algorithm are listed below: 
 
1. If the LR frames are not registered, obtain the 

registered set of points {pt(xt, yt)} using the known Regis-
tration parameters in the coordinate system R × R 

defined with respect to fr. The grid (sampling lattice) so 
obtained is an irregularly sampled grid (sampling lattice).  
2. Define the required HR grid (sampling lattice) in the 
coordinate system defined above, that is, determine the 

matrix M. Split M into two sets of points: one set, Mu, is 
comprised of points whose values are to be updated and 
retained in the subsequent steps of the algorithm, and 

another set, Mp, which is to be predicted and eliminated 
from the coarse representation developed below.  

3. For each point in the set Mp, say fhr[k0, 0] :  
 
• Determine the closest point, say p0(x0, y0) from the set 

{pt(xt, yt)} and also its 1-ring neighborhood (or whichever 

prediction neighborhood is being employed), N(p0).  

• Compute the prediction at p0(x0, y0) by employing a 
predictor function (such as the least squares plane 

predictor) using points in N(p0). It should be noted that 
boundary points are handled differently, as in (Wang and 
Bovik, 2002). Subsequently, replace the scaling function 

coefficient at p0(x0, y0) by the computed detail coefficient 
which is the error in prediction.   
• Determine the area, A0, corresponding to the support of 

the scaling function at p0(x0, y0), as given in (Wang and 
Bovik, 2002).  

• Coarsen the grid by deleting the point p0(x0, y0) 
from further consideration.   
• Compute areas, Ak, k = 1, . . . ,K, corresponding to the 
points belonging to the prediction neighborhood.   
• Update the scaling function coefficients at points belon-

ging to N(p0), using a minimum norm update operator.  
 
4. A second generation 2-D surface wavelet has now 

been defined locally around the point fhr[k0, 0] on the irre-
gularly sampled registered grid. Compute the detail 

coefficient at fhr[k0, 0] by resampling the wavelet surface.  
5. To achieve noise reduction, the wavelet/detail coeffi-  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11. Edge sensitive adaptive neighborhood of a point. 

 
 
 
cients computed are subjected to thresholding. 
6. The inverse lifting procedure is now applied on the HR 

grid to obtain the super resolved image, fhr. 
 
 
SIMULATION RESULTS 
 
This section presents comparative results which highlight 
the performance of the generic 2-D SGWSR algorithms. 
The LR frames used in the simulation (of size 40 × 40 
pixels) were generated using an 80×80 image by down-
sampling and low-pass filtering. Further, the LR frames 
are all displaced with respect to each other, but unlike the 
results presented in Section 4 (in which the displace-
ments were restricted to only translations), the displace-
ments follow the more general projective camera motion 
model. The LR frames were also corrupted by AWGN at 
the input. The simulation result shown in Figure 8 
employed 6 LR frames and a resolution improvement 
factor of 2 in each dimension were achieved. It is noted 
that the use of higher number of good quality LR frames 
(which can be determined by the preprocessing steps) 
can not only lead to higher resolution factors, but also to 
possibly improved noise reduction. A sample LR frame is 
shown in Figure 12(a) and the original image is shown in 
Figure 12(b). The SGWSR reconstructions using hard 
and soft thresholding are given in Figures 12(g) and 12(h) 
respectively. For comparison, four other HR reconstruct-
tions based on surface approximation and interpolations 
are given in Figures 12(c)-12(f). It can be observed from 
Figures 12(c) and 12(d) that direct interpolation (bilinear 
and bicubic, respectively) of a single LR frame gives, as 
intuitively expected, the worst visual quality. The outputs 
of the DTHR methods are better than direct interpolation, 
but noisy due to the lack of simultaneous noise filtering 
ability. 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) sample LR frame (b) original 
 
 
 
 
 
 
 
 
 
 
 
 

 
© bilinear interpolation (d) bicubic interpolation 
MSVD (Metric based assessment of MSVD = 0.0773 
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(e) DHTR-bilinear (f) DHTR-bicubic 
MSVD = 0.0621 MSVD = 0.0618 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
(g) SGWSR hard thresholding (h) SGWSR soft thresholding 

M = 0.0621 M = 0.0618 
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Figure 12. SGWSR using generic 2-Doperators lenna. 



 
 
 
 
Conclusions 
 
A framework for achieving image sequence superresolu-
tion simultaneously with noise filtering has been develop-
ped based on SGWs coupled with wavelet coefficient 
thresholding. The main advantages of the developed 
procedures are the adaptation to non-uniform sampling 
lattices, the absence of a priori assumptions on boundary 
conditions, independence from proper choice of mother 
wavelets and scaling functions, and the speed of imple-
mentation provided by the lifting technique. These advan-
tages coupled with the improved performance in terms of 
visual quality of the reconstructed HR images make 
SGWSR algorithms potentially natural and suitable choic-
es for multimedia applications. 
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