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Design sensitivity is central to most optimization methods. The analytical sensitivity expression for an 
indeterminate structural design optimization problem can be factored into a simple determinate term 
and a complicated indeterminate component. Sensitivity can be approximated by retaining only the 
determinate term and setting the indeterminate factor to zero. The optimum solution is reached with the 
approximate sensitivity. The central processing unit (CPU) time to solution is substantially reduced. 
The benefit that accrues from using the approximate sensitivity is quantified by solving a set of 
problems in a controlled environment. Each problem is solved twice: first using the closed-form 
sensitivity expression, then using the approximation. The problem solutions use the CometBoards 
testbed as the optimization tool with the integrated force method as the analyzer. The modification that 
may be required, to use the stiffener method as the analysis tool in optimization, is discussed. The 
design optimization problem of an indeterminate structure contains many dependent constraints 
because of the implicit relationship between stresses, as well as the relationship between the stresses 
and displacements. The design optimization process can become problematic because the implicit 
relationship reduces the rank of the sensitivity matrix. The proposed approximation restores the full 
rank and enhances the robustness of the design optimization method. 

 
Key words: Approximate sensitivity, design, optimization, singularity, implicit relationship, indeterminate 

structure. 
 
 
INTRODUCTION 
 
Design sensitivity is central to most optimization meth-
ods. It can be a major contributor to the number of 
calculations in optimization. The computation of efficient 
design sensitivity for structural problems has drawn con-
siderable attention (Haug et al., 1984; Haftka, 1982; Haug 
and Choi, 1984). NASA organized a conference on the 
subject matter (Adelman and Haftka, 1987). It is also well 
documented in the literature (Choi and Kim, 2005; Kirsch, 
2002; Vervenne, 2000; Kibsgaad, 1992, Kolonay et al., 
1998). General-purpose codes provide for the calculation 
of sensitivity for stress and displacement constraints 
(Nastran, 2001). The automatic differentiation of the 
FORTRAN code, ADIFOR (Wujek and Renaud, 1998), 
has also been suggested to calculate sensitivity. In such 
a circumstance, we ask and attempt to answer a question 
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about the precision of the sensitivity of stress and 
displacement constraints in the design optimization of an 
indeterminate structure: ―Is the optimization proc-ess 
robust when the design sensitivity matrix is highly 
accurate?‖ The contrary may be true. The performance of 
an optimization method can be improved when the 
analytical sensitivity is replaced by a determinate appro-
ximation. The approximate sensitivity matrix is not only 
adequate, but it should be preferred in the design calcu-
lation of an indeterminate structure. Optimization, in other 
words, requires sensitivity, but approximate gradi-ents 
are quite satisfactory. To illustrate the benefits that 
accrue from the approximations, the authors used seve-
ral indeterminate trusses as numerical examples be- 
cause design optimizations have been completed for 
such structures. The concept, however, should be 
extendable to other types of structures, such as beams, 
framework, and shell structures.  

Consider a truss that is made of n bars with r depen-
dent members. The n bar areas are treated as the design 



 
 
 
 
variables. Approximate sensitivity works well because of 
three attributes special to an indeterminate truss. 
 
 
Dependent stresses 
 
In an indeterminate truss, r out of n bar stresses {} is 
dependent. Stresses are dependent because of the r 
compatibility conditions, which can be written as  
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Dependency of stresses and displacements       
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variables. 
 
 
Active constraints 
 
In structural design, the number of active constraints can 
exceed the number of design variables. In an optimiza-
tion algorithm, the singularity condition can be alleviated 
by restricting the number of active constraints to not 
exceed the number of design variables.  

In an optimization algorithm, the calculation of the search 

direction {d} requires the constraint gradient matrix  
[g]. An example of the use of the sensitivity matrix to 
generate the direction given by Best (Gallagher and 
Zienkiewicz, 1973) follows: 
 

d  Qf  (1) 
 

I   g g 
T

 g  
1

 g
T
 

Q    

0.5 HfTHf 
 
Here f is the objective function, and 
 

H   I   gg
T
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1
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The matrix g T g  becomes singular for each of the 
 
three special attributes, items (1) to (3), stated above. An 
optimization algorithm may yield a solution despite the 

singularity condition because the Q matrix is approxi-  
mated most often; it is seldom calculated in closed form. 
It is reinitialized into an identity matrix when corruption is 
suspected. The proposed approximate sensitivity of 
stress and displacement constraints alleviates the singu-
larity condition in the design optimization of an indeter-
minate truss. The solution is reached with fewer calcula- 

 

  
 
 
 
tions because the optimization process becomes more 
robust, and the sensitivity is generated with a trivial 
amount of computations. The benefit that accrues from 
the use of approximate sensitivity is shown through the 
solution of a set of problems that were selected from the 
literature. Each problem was solved twice in a controlled 
environment, first using the closed-form gradient, then 
with an approximation. A comparison of the two optimum 
solutions quantified the benefit. The underlying cause of 
the benefit was investigated through a discussion of the 
nature of structural design optimization problems.  

This paper is organized into six subsequent sections. 
The design problem is formulated in the second section. 
The analysis and optimization tools are discussed in the 
third and fourth sections, respectively. Solutions to a set 
of problems are given in the fifth section, followed by a 
discussion and conclusions in the sixth section. A 
symbols list is given in the appendix to aid the reader. 
 
 
Design optimization problem 
 
Minimum weight is the objective of the truss design 

problem. The bar areas Ai are considered as the design  
variables. Limitations specified on the bar stress i and 

nodal displacement uj form the behavior constraints. The 
design optimization is cast as the following mathematical 
programming problem. 
 
Find n design variables, here bar areas 

 
A :         
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To minimize the weight of the truss,  W ( A) i Ai l i 
(2) 
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under n stress constraints, 
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and m displacement constraints, 

 

gn j ( A)  

 
u

 j 
 

 1  0 

 
 

    
 

  u
 j0 

  
 

        
 

 

Here i and l i are the weight density and length, i and 
 
i0 are the stress and allowable strength, and uj and uj0 

are the nodal displacement and limitation, respectively. 
For a large problem, the number of design variables can 
be reduced by linking bar areas. Likewise, a small 
number of critical constraints can be separated and used 
in the design calculations (Patnaik et al., 1993). 

 
Design update formula 
 
A  key  formula  to  update  the  design  variables  (here  

area Ai ) in a  nonlinear programming  algorithm at  a 
 

k 
th

 intermediate iteration can be written as  
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The step length k–1 is calculated to minimize the 

weight along the direction { d}k–1 inside the feasible 
domain. All n + m constraints should be used to define 
the feasible space. The sensitivities of the set of active 
stress and displacement constraints are required to cal-

culate the direction vector { d}k–1. The quality of the direc-
tion vector is dependent on the accuracy of the sensitivity 
matrix. A spurious direction would be generated if the 
sensitivity matrix was rank deficient.  
Consider the j

th
 stress constraint. Its closed- form 

gradient can be expressed as the sum of two factors: 
 

1 determinate indeterminate  (4) 
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
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The gradient expression given by Equation (4) has to 
be adjusted for the absolute value in the constraint, which 
however, poses no limitation to the discussion here. The 

first factor {j} 
determinate

 is applicable to deter-minate as 
well as indeterminate trusses. This vector has only one 
nonzero entry, which is the negative ratio of the member 

force to the square of the bar area (–F/A
2
). The second 

term {j} 
indeterminate

 accounts for the effect of 
indeterminacy. It is not a negligible factor. It can be fully 
populated, and its calculation is computationally inten-  
sive. The proposition is to drop the second term {j} 
indeterminate

 in design optimization even when it is nontri-vial.  
The nature of the gradient of the displacement constraint 
is quite similar to that of the stress constraint. Again, the 
proposition is to retain only the simple determinate factor.  

The gradient-approximation concept is illustrated 
considering torsion of a shaft as an example. The shear  
stress   , at a distance r from the neutral axis, with an  
induced torque T  and polar moment of inertia  J  can 

be written as: 
 

 
Tr (5a) 

 

J  
 

 
Consider the polar moment of inertia J as the design 
variable. For a determinate shaft the induced torque is 
independent of the polar moment of inertia and gradient 
with respect to J can be written as:  

 det er min ate     1 
(5b) 

 

Tr  

J 
  

  J 
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The gradient matrix for a multiple variables shaft problem 
becomes a diagonal matrix with elements given by 
Equation (5b). For an indeterminate shaft the induced 
torque T(J) becomes a function of the polar moment of 
inertia. Equation 5b has to be modified as: 
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The proposition is to retain only the determinate factor, 
which is easy to calculate and drop the indeterminate 
factor that is computation intensive because torque be-
comes an implicit function in the design variables. 

 
Analysis tool 
 
An analysis tool is required to calculate the stress and 
displacement constraints and their sensitivities. Here, the 
integrated force method (IFM) (Patnaik and Hopkins, 
2004) is employed. The structure of the IFM equation is 
suitable to calculate the closed- form sensitivities 
because the sizing design variables of a structure (here 
bar areas) are retained in a pristine state in the 
concatenated flexibility matrix [G]. In addition, IFM has 
two distinct sets of equations. The first set, with internal 
force as the primary unknown, is differentiated to obtain 
the sensitivity of stress. Likewise, the sensitivity of 
displacement is recovered by differentiating the second 
set of equations. The adjustment that may be required for 
the stiffness method of analysis is also discussed in this 
paper. The IFM equations to calculate forces and back-
calculate displacements are as follows:  
Internal forces {F} are calculated from the governing IFM 

equation: 
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Displacements {X} are back-calculated from the forces: 
 

 X   J G F (6b) 
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And 
 
[S] n  n governing matrix [B] m 

 n equilibrium matrix [C] r  n 

compatibility matrix 
[G] n  n flexibility matrix 
{F} n-component force vector 

P
m 

{P} n-component load vector, {P} =    
R 

 
{P

m
}    m-component mechanical load vector 

{R } r-component initial load vector, r = n – m 
{X} m-component displacement vector  
[J] first m rows of [[S]

–1
]
T
 matrix of dimension m  n 

 
The sensitivity matrix for the stress and displacement 
constraints for an n-bar truss with r dependent members 
is obtained by differentiating the IFM equations. The 
closed-form sensitivity matrix for stress has the following 
form (Patnaik and Gallagher, 1986): 
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The expression given by Equation (7) should be adjusted 
for the allowable strength prior to its use in design  
optimization. The rank of the n  n sensitivity matrix [] 
in Equation (7) is reduced to m = n – r when both terms 
are retained. The recommendation is to use only the first 
term in Equation (7), which is superscripted ―determnate.‖ 
It is a diagonal matrix with full rank n. The proposition is 
to drop the second term that is superscripted ―indeter-
minate.‖ The calculation of this term is computation inten-
sive. The closed-form displacement sensitivity follows: 
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The proposition is to use the first factor with superscript 
―determinate‖ in design optimization. The definitions of 
the symbols in Equations (7) and (8) are as follows: 

 

  
 
 
 

areas A . Even for an active displacement constraint, the 

design in essence is modified through the member force. 
 
2) The geometry of the truss is not explicitly contained in 
the sensitivity expression for stress because it is a local 
variable.  
 
3) Because displacement is a global variable, its sensiti-
vity expression explicitly contains the geometrical or con-
figuration parameters, the material property, and the 
design variables.  

 
Optimization tool 
 
The consequences of using approximate sensitivity in 
design optimization are demonstrated through the solu-
tion of a set of problems. Solutions were generated within 
the framework of the design optimization test bed Comet-
Boards (Guptill et al., 1997). Each problem was solved 
twice, first using the determinate sensitivity, then with the 
full closed-form expression. Problems were solved in a 
controlled environment on an SGI workstation running the  
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are given by 

 
IRIX 6.5 operating system (Silicon Graphics, Inc., 
Mountain View, CA) . Identical convergence and stop 
criteria were used for the optimization algorithm. For large 
problems, we reduced the number of design varia- bles 
and constraints by utilizing the design variable linking and 
constraint formulation features available in CometBoards. 
A sequential quadratic programming algo-rithm, SQP 
(Gallagher and Zienkiewicz, 1973), was the primary 
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The determinate factor in the displacement sensitivity 
can be specialized for an n-bar indeterminate truss as 
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The displacement sensitivity given by Equation (9) is a 

function of the bar length l , Young’s modulus E, and  
areas A because displacement is a global variable. 
Calculation of the determinate sensitivity for the 
displacement essentially requires a back-substitution step 
with the factored form of the inverse of the S matrix. It is 
important to observe the similarities and differences in the 
sensitivity expressions of the stress and displacement. 
 
1) Sensitivities of both the stress and displacement 

contain the member forces F and the square of bar 

 
optimizer. This algorithm was supplemented, when 
required, by a modified method of feasible direc-tions 
(mFD) and a sequential unconstrained minimization 
technique (SUMT).  

Research to compare different optimization algorithms 
and alternate analysis methods for structural design 
applications has grown into a multidisciplinary design test 
bed that is still referred to by its original acronym, 
CometBoards, which stands for Comparative Evaluation 
Test Bed of Optimization and Analysis Routines for the 
Design of Structures. The modular organization of 
CometBoards, shown in Figure 1, allows for quick testing 
of innovative methods (or computer codes) in a controlled 
environment through its soft- coupling feature. Optimizers 
and analyzers are two important modules of 
CometBoards. The optimizer module includes a number 
of algorithms: the fully utilized design method, optimality 
criteria methods, the method of feasible directions, mFD, 
three different versions of SQP techniques, SUMT, the 
sequence of linear programming, a reduced gradient 
method, and others. Likewise, the analyzer module 
includes several structural analysis codes, an aircraft 
flight optimization analyzer, a jet engine performance 
program, and others. CometBoards has several unique 
features, including a multiple optimizer cascade strategy, 
design variable and constraint formulations, a global 
scaling strategy, analysis and sensitivity approximations, 
regression and neural network approximators, and subst-
ructure optimization in sequential as well as in parallel 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.   O rga nizatio n   o f   th e   desig n   o ptimiz ation   test    b ed 
 

COMMETBOARDS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Three-bar truss. 

 
 
 
computational platforms. CometBoards can accommo-
date up to 10 different disciplines, each of which can 
have a maximum of five subproblems. The test bed can 
optimize a large system that can be defined in as many 
as 50 different subproblems. Alternatively, a component 
of a large system can be optimized. 
 

 
Numerical examples 

 
Solutions were generated for a set of six examples. The 
number of design variables ranged between 3 and 23 
linked variables. The constraints ranged between 7 and 
312. First, we summarize each problem and provide its 
optimum solution. This is followed by the CPU time to 
solution. We conclude the section with a discussion on 
the search direction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Numerical example 1: a three-bar truss 
 
The optimum solution was calculated for the three-bar 
steel truss shown in Figure 2 using the determinate term 
as well as the full-sensitivity expression. The truss in this 
figure was subjected to three different load cases. A 100-
kip load applied along the negative y-coordinate direction 
at the free node 1 was the first load case. The second 
and third load cases consisted of a 100-kip load in the 
positive and negative x-coordinate directions, respect-
tively. The three bar areas were the design variables, and 
minimum weight was the objective. The allowable stress 
was 20 ksi for each member. The displacement 
limitations were 0.25 and 0.50 in. at node 1 along the x 
and y directions, respectively. There were a total of nine 
stress and six displacement constraints. The problem 
was solved using the SQP algorithm, and the optimum 
solution is given in Table 1. 



  
 
 
 

Table 1. Optimum solution for the three-bar truss. 
 

Weight, Design variables, Active constraints Sensitivity 
lbf  in.

2
     

 A1 A2 A3 Stress Displacement  

163.6 1.89 0.33 1.89 1 2 Determinate 
163.8 1.89 0.33 1.89 1 2 Analytical 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.Tapered five-bar truss. 

 
Table 2. Optimum solutions for the five-bar truss. 
 

Method Weight,  Design variables,  Active constraints Sensitivity 
 lbf   in.

2
      

  A1 A2 A3 A4 A5 Stress Displacement  

SQP 645.0 2.21 1.41 1.65 1.60 0.25 5 2 Determinate 
mFD 646.7 0.84 2.78 0.25 2.98 0.63 4 2 Determinate 
SUMT 646.8 1.74 1.89 1.17 2.09 0.34 5 2 Determinate 
SQP 646.2 2.48 1.15 1.93 1.34 0.25 4 2 Analytical 
mFD 648.5 1.81 1.83 1.24 2.03 0.37 4 2 Analytical 
SUMT 647.7 1.81 1.82 1.25 2.01 0.36 4 2 Analytical 

 

 
The SQP algorithm converged to the same optimum 

solution for the determinate as well as for the full-sensiti-
vity expression. At the optimum, the rank of the sensitivity 
matrix was 2 and 3 for the analytical and determinate 
sensitivity expressions, respectively. The three-variable 
problem had three active constraints. 
 
 
Numerical example 2: a tapered five-bar truss 
 
The optimum solution was obtained for the tapered five-
bar steel truss shown in Figure 3. The truss geometry and 
loads are depicted in the figure. The allowable stress was 
20 ksi, and the displacement limitations were 0.25 and 
0.50 in. at node 2 along the x and y directions, res-
pectively. The five-bar areas were the design variables, 

with a 0.25-in.
2
 lower bound on bar areas. The problem 

 

 
had a total of seven constraints. It was solved using three 
algorithms: SQP, mFD, and SUMT. The optimum solu-
tions are given in Table 2.  

This example appears to have multiple optimum 
solutions with about the same weight of 646 lbf. The 
SQP, mFD, and SUMT algorithms converged to different 
optimum solutions with a small variation in the weight. For 
determinate sensitivity, the mean weight was 646.2 lbf, 
with a maximum deviation of about 0.2 percent. For the 
closed-form sensitivity, the weight was marginally higher 
at 647.5 lbf, also with a 0.2- percent variation. The 
variation in area was rather wide. Consider, for example, 
the area for the first bar. For the full-sensitivity expres 

sion, its mean was 2.0 in.
2
, with a maximum deviation of 

22 percent. For the approximation, the mean was 1.6 in
2
, 

with a maximum variation of 47 percent. The sum of the 

areas for bar 1 and bar 2 remained at 3.62 in
2
 when bar 1 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Forward-swept wing. 

 
 

Table 3. Optimum solutions for the forward-swept wing. 
 

Method Weight, Mean value of design Active constraints CPU time, Sensitivity 
 

 

lbf variables,in.
2
 

  

sec 
  

 Stress Displacement  
 

SQP 4217.9 7.34 20 1 8.7 Determinate 
 

SUMT 4071.5 7.11 24 1 6.2 Determinate 
 

SQP 4218.5 7.35 20 1 67.5 Analytical 
 

SUMT 4072.7 7.11 24 1 34.0 Analytical 
 

 

 
became heavier, bar 2 became lighter and vice versa. 
The active constraint set included two displacement limi-
tations and either four or five stress constraints. The 
determinate sensitivity performed at about the same level 
as the closed-form gradients. The five-variable problem 
with six active constraints was not a well-posed 
mathematical programming problem (Kolonay et al., 
1998). 

 
Numerical example 3: a forward-swept wing 
 
A forward-swept wing made of aluminum was modeled as 
a space truss with 135 bars, as shown in Figure 4. It was 
subjected to loads at the wing tip that induced flexure in 
the x-z plane and torsion in the y-z plane. The allowable  
stress was 0 = 10 ksi for all members. Displacements 
along the z- coordinate direction were constrained at 
nodes 10 and 30 with a 2-in. limitation. The 135 bar areas 
were grouped to obtain 23 linked design variables. The 
problem had 135 stress and two displacement 
constraints. The optimum solutions obtain-ed by the SQP 
and SUMT algorithms are given in Table 3. The SQP 
algorithm converged to the minimum weights of 4218.5 

 

 
and 4217.9 lbf for analytical and determinate sensitivities, 
respectively. For the SUMT algorithm, the weights were 
4072.7 and 4071.5 lbf, respectively. The 3.5-percent 
difference in the minimum weight between the algorithms 
could be attributed to the complexity of the problem. The 
mean values of the design variables are depicted in Table 
3. Eight variables converged to the lower bound (0.25 

in.
2
). There were six and nine variables, above and below 

the mean value, respectively. A consistent set of active 
constraints was generated for the determinate as well as 
the analytical sensitivities. However, there were more 
active const-raints than the number of design variables. 
The mFD algorithm converged to a heavy design that 
was considered incorrect and excluded from discussion. 
The solution with approximate sensitivity required a much 
smaller number of calculations. The cetral processing unit 
(CPU) time to solution for the determinate and the closed-
form sensitivities was reduced by factors of 7.8 and 5.5 
for the SQP and SUMT methods, respectively. 
 
 
Numerical example 4: a trussed ring 
 
The design of the trussed steel ring shown in Figure 5 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Sixty-bar trussed ring. 

 
 
Table 4. Optimum solution for the trussed ring. 
 

Method Weight,  Design variables, in.
2
 Active constraints CPU Sensitivity 

 lbf Mean  Variation Stress Displacement time,  

  value  Minimum Maximum   sec  

SQP 799.9 3.15  2.18 4.05 28 1 2.3 Determinate 
SUMT 797.7 3.15  2.18 4.01 28 1 1.3 Determinate 
SQP 799.9 3.15  2.18 4.04 28 1 7.4 Analytical 
SUMT 798.0 3.15  2.19 4.00 28 1 7.1 Analytical 

 
 
 
was considered next. The ring was made of 60 bars and 
had inner and outer diameters of 180 and 200 in., 
respectively. It was fully restrained at node 10 and free to 
move only along the y direction at the diametrically 
opposite node 16. The ring was subjected to two load 
conditions. The first load condition consisted of a 40-kip 
compression along the ring’s horizontal diameter, which 
was applied at nodes 1 and 7. In the second case, a 40-
kip load was applied at node 4 to induce compression 
along the vertical diameter.  

The 60 bar areas of the truss were grouped to obtain 
16 linked design variables. The ring had 60 stress const-
raints (with yield strength of 20 ksi) for each load condi-
tion. The distortions of the ring along the horizontal and 
vertical diameters were controlled through a 4-in. displa-
cement limitation specified at nodes 1, 4, and 7 for each 
load condition. The problem had a total of 120 stress and 
6 displacement constraints. Optimum solutions generated 
by SQP and SUMT algorithms are given in Table 4. 

 
 
 
Mean, maximum, and minimum values are given for the 
16 design variables.  

Both SQP and SUMT algorithms with approximate as 
well as the closed-form sensitivities converged to the 
same solution with a 0.25-percent deviation in the mini-
mum weight. The CPU time to solution was 321 and 318 
percent faster for approximate sensitivity with the SQP 
and SUMT algorithms, respectively. The 16-variable pro-
blem had 29 active constraints. 

 
Numerical example 5: a 25-bar truss 
 
The aluminum tower modeled as the 25-bar space truss 
shown in Figure 6 was designed for minimum weight 
under stress and displacement constraints. It was subjec-
ted to two load conditions. In the first load case, node 1 
was subjected to three load components: 5-, 20-, and –5-
kip forces along the x, y, and z axes, respectively. In the 
second load case, node 2 was subjected to –20- and –5- 



 
 
 
 

Table 5. Optimum solutions for the 25-bar truss. 
 

Method Weight, Design variables, in.
2
 Active constraints Sensitivity 

 lbf Mean Variance Stress Displacement  
  value     

SQP 190.5 0.49 0.13 7 2 Determinate 
mFD 190.6 0.49 0.13 7 2 Determinate 
SQP 190.5 0.49 0.13 7 2 Analytical 
mFD 190.4 0.49 0.13 7 2 Analytical 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Twenty-five bar tower. 

 

 
kip forces along the y and z axes, respectively.  

The allowable stress was 10 ksi, and the displacement 
limitation was 1 in. in all three directions for the six free 
nodes. The 25 bar areas were linked to obtain eight de-
sign variables. The problem had 25 stress and 18 displa-
cement constraints. The optimum solutions calculated by 
the SQP and mFD algorithms are given in Table 5. The 
mean value and variance are given for the eight design 
variables. The eight-variable problem had nine active 
constraints. Both the SQP and mFD algorithms conver-
ged to the same optimum solution for the determinate as 
well as the analytical gradients. 
 
 
Numerical example 6: a 20-bay truss 
 
The minimum-weight design was calculated for the 20-
bay steel truss shown in Figure 7. The structure in the 
figure was subjected to three load cases. The first load 
case consisted of forces in the negative y- coordinate 
direction along the bottom chord nodes: –40 kip at the 
midspan and –1 kip at the other nodes. For the second 

 
 
 
load case, all the top chord nodes were subjected to a 3-
kip force along the x-coordinate direction. For the third 
load case, all the bottom chord nodes were subjected to a 
–3-kip force along the negative x-coordinate direction.  

The allowable stress was 0 = 20 ksi. A displacement 
limitation of 0.5 in. was imposed at the midspan nodes 21 
and 22 along the x- and y-coordinate directions, 
respectively. The 101 bar areas were grouped to obtain 
five linked design variables. The first two design variables 
represented the bar area of the top and bottom chord 
members, respectively. All 21 vertical bar areas were 
grouped to obtain the third variable. The last two design 
variables represented the bar area of the leading and 
lagging diagonal members, respectively. The five-variable 
problem had a total of 312 stress and displacement 
constraints. Optimum solutions obtained by the SQP 
algo-rithm are given in Table 6.  

The SQP algorithm converged to the same solution for 
the determinate as well as for the analytical sensitivities. 
With the approximation, the CPU time to solution was 590 
percent faster. With five design variables and four active 
constraints, this was a well-posed mathematical program-
ming problem. 
 
 
Computational efficiency 
 
All six examples converged to the correct solution with 
the approximate sensitivity. To examine the computa-
tional efficiency when the approximate sensitivity was 
used, we solved the three larger problems: the ring, the 
wing, and the 20-bay truss in a controlled environment 
using the SQP algorithm on an SGI workstation with an 
IRIX 6.5 operating system. The CPU time to optimum 
solution was measured for both the determinate and the 
closed-form analytical sensitivities. The CPU time to 
solution is depicted in Table 7.  

For the 60-bar trussed ring, the optimum solution was 
reached in 2.3 CPU sec with approximate sensitivity. The 
time increased threefold for analytical sensitivity. For the 
forward-swept wing, the time factor in favor of the 
approximation was almost eightfold; 8.7 CPU sec with 
approximation against 67.5 sec for analytical sensitivity. 
The time ratio was 6 for the 20-bay truss; 2.5 and 14.8 
CPU sec with approximate and analytical sensitivities, 
respectively. Overall, the time to solution increased from 
threefold to eightfold for the analytical sensitivity. 



          

Table 6. Optimum solutions for the 20-bay truss.       
             

Weight,  Design variables, in.
2
  Active constraints CPU time, Sensitivity   

lbf A1 A2  A3 A4 A5 Stress Displacement sec    

2023.2 3.44 7.03  0.41 1.38 1.38 3 1 2.5 Determinate   

2021.8 3.44 6.99  0.41 1.39 1.39 3 1 14.8 Analytical   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Twenty-bay truss. 
 

 
Table 7. CPU time to solution for large problems with the the graph in Figure 8 for the 20-bay truss. The converg- 

 

SQP algorithm.      ence patterns, with and without approximation, portray 
 

        undulations that are quite similar. However, the converg- 
 

 60-bar Forward-  20-bay  Sensitivity  ence is very rapid with the determinate sensitivity. The 
 

 ring swept wing  truss    convergence characteristic is similar for the 60-bar truss- 
 

 2.3 8.7  2.5  Determinate  ed ring and the forward-swept wing shown in Figures 9 
 

 7.4 67.5  14.8  Analytical  and 10, respectively.     
 

Approximate sensitivity increased computational effici- 
Angle between search directions 

  
 

ency by several orders of magnitude. 
     

 

                
 

        The iterative optimization process moved along a search 
 

Convergence pattern      direction d  from one design point to another. The sear 
 

The convergence of weight versus CPU time to solution ch directions, generated from the gradients, differed for 
 

with analytical and approximate sensitivities for the three the  analytical danl  and determinate sensitivi- 
 

large problems is depicted in Figure 8. For each problem, ties
 ddeterminate  

.
 If 

 

the difference between 
 

optimization was begun with the same initial design. Both  
 

methods produced similar optimum solutions. Consider d
anl and ddeterminate was  small, then  the contribution  to 

 

        
 

        sensitivity  from  the  indeterminate  factor  could  be 
 

        considered to be negligible. Otherwise, the contribution 
 

        from the indeterminate factor could be significant. To 
 

        examine this issue, we defined an angle i  at the i
th

 
 

        iteration  between  search  directions  generated  using 
 

        determinate ddeterminate and analytical danl sensitivities as 
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        The angle would be zero (i = 0) if the determinate and 
 

Figure 8. CPU solution time for SQP algorithm-twenty-bay truss. 

the analytical gradients were identical; otherwise, it would 
 

be nonzero (i  0). In some scale, the angle i was a 
  



               
 

  Table 8. Angle between search directions solved with SQP algorithm for the five-bar truss.    
 

                 
 

        Direction vector, d        
 

  Initial design point, angle initial = 25 Optimum solution point, angle opt = 64 
 

    Sensitivity      Sensitivity     
 

  Determinate Analytical Determinate  Analytical  
 

   0.38   0.31   1.51        
 

               
0.19 

  
 

  r
 initial 0.16 r

 initial 0.03 r
 opt 1.44 

5 anl-opt   
5  

          

1.77 
 

 

  
d

determinate 
 0.23 d

anl 0.36  d
determinate    4.14 10  d  10  

 

                  
 

   0.39  0.22   0.30   0.30  
 

   0.09  0.07  0.00    0.00   
 

 

 
 At the initial point, the angles varied from 20 for the 
 forward-swept wing to 51 for the 20-bay truss. At the 
 optimum  solution  point,  the  minimum  and  maximum 
 values  for  angles  were  39  and  89,  respectively.  In 
 summary, the directions taken from the initial point to 
 reach  the  optimum  solution  were  different  for  the 
 analytical  and  the  determinate  sensitivities.  In  other 
 words, the indeterminate component of the sensitivities in 
 Equation (4) was not negligible and it changed the path of 
 optimization. 

 DISCUSSION 

Figure 9. CPU solution time for SQP algorithm - sixty-bar Design optimization was not sensitive to the precision of 
trussed ring. the gradients of the stress and displacement constraints 
 of an indeterminate truss. Simple determinate sensitivities 
 performed very well for all design problems. The CPU 
 time to optimum solution was substantially reduced with 
 the determinate sensitivity. The question is: Why did the 
 determinate  sensitivity outperform  the  full  closed-form 
 gradient? An answer was attempted through a discussion 
 of the nature of the structural design problem. 

 Nature of the structural design problem 
 
 
 
 

 
Figure 10. CPU solution time for SQP algorithm- forward-

swept wing 

 
measure of the difference between the closed-form and 
determinate gradients of the active constraints. For the  
five-bar truss shown in Figure 3, the angle i was 

calculated at the initial and the optimum design points for 
the SQP algorithm. Numerical values for the directions 
and angle are given in Table 8.  

The angle was different at the initial as well as at the  
optimal design points with values initial = 25 and opt = 64. 

For the three large problems, the angles were calculated for 

the SQP algorithm and are given in Table 9. 

 
The nature of the design optimization problem was 
examined by considering the three-bar truss shown in 

Figure 2. The problem had three design variables (A1, A2,  
A3). It had three stresses (1, 2, 3) and three stress 

constraints (g1, g2, g3). Likewise, there were two 

displacements (X1, X2) and two constraints (gx1, gx2) for 
each load case. There were three implicit structural analysis 
relationships between the five behavior variables: 
 

1 2 3  0 (11a) 
 

X1  
l  
2  21  (11b)  

E  

     
 

X2  
l  2 

(11c) 
 

E  
 

     
 



 
 
 
 
Table 9. Angle between search directions for large problems solved with SQP algorithm. 

 

Problem Angle, , deg 

 Initial design point, initial Optimum solution point, opt 
60-bar trussed ring 47 39 
Forward-swept wing 20 89 
20-bay truss 51 40 

 
Table 10. Rank of sensitivity matrix for a three-bar truss. 

 
 Case  Set of active constraints Rank of sensitivity matrix 
  Total Number of each Constraints Analytical Determinate 

1  2 1 stress and g2, gx2 1 2 
   1 displacement    

2  3 3 stresses g1, g2, g3 2 3 

3  3 2 stresses and g1, g2, gx1 2 3 
   1 displacement    

4  5 3 stresses and g1, g2, g3, gx2, gx3 2 3 
   2 displacements    

 

 
Equation (11a) is the compatibility condition (CC), and it 

is expressed in stresses. Equations (11b) and (11c) are 
the deformation displacement relations, also expressed in 
stress variables. It is important to observe that the three 
implicit relationships do not explicitly contain the design 
variable. In other words, gradient of one stress can be 
expressed in terms of the gradient of other stresses.  

Such  as for example,    2   1  3  and 
 

  l   If the second stress g2  and second 
 

X1   2  21  .   

E   

      
 

displacement gx2 constraint become active, then the 
coefficient matrix [Q] of the direction vector {d} in  
Equation (1) will become singular and [g2; gx2] will 
become rank deficit. Four possible singularity situations 
are listed in Table 10. In case 1, a member stress (2) is 

dependent on a single displacement (x2). The rank of the 
sensitivity matrix was 1, but it was restored to 2 with the 
approximation. Consider case 3 with three active 
constraints. The approximation had a full rank of 3, 
whereas the analytical sensitivity had a rank deficit of 2. 
The other two cases also exhibited deficient rank.  

The four singularity cases listed in Table 10 cannot be 
ascertained prior to the initiation of the optimization 
calculations because constraint activity depends on the 
value of design variables. Singularity will be avoided 
when determinate sensitivity is used because it restores 
the full rank of the sensitivity matrix as shown in Table 10. 
In other words, the implicit relationship of the behavior 
constraints induced singularity in the design optimization 
of this truss. 

 
Coefficients in equilibrium and compatibility matrices 
 
The number of stress and displacement components in 
the implicit relationship, similar to that in equation (11), 

 
 
depends on two quantities: qee and qcc. The number of 
entries (or nonzero coefficients) in a column of the 

equilibrium matrix [B] is qee. Likewise, the number of 
nonzero coefficients in a row of the compatibility matrix 

[C] is qcc. Both qee and qcc are small numbers. In other 
words, a small number of stresses are dependent. 
Likewise, a displacement is dependent on few stresses. 
Consider the example of the 20-bay truss shown in 
Figure 7. The number of coefficients in a column of its  
equilibrium matrix varies between one and four (1  qee  
4; four is more prevalent). The coefficients in a row of the  
compatibility matrix range between 6 and 20 (6  qcc  
20; the typical number is six). Six typical dependence 
relationships for the truss are given in Table 11. 

For case 1, one stress and one displacement are 

dependent because qee = 1. For case 2, one stress is 

dependent on two displacements because qee = 2. For 
case 3, one stress is dependent on four displacements 

because qee = 4. For cases 4 and 5, six stresses are 

dependent because qcc = 6. For case 6, 20 stresses are 

dependent because qcc = 20. The sixth case is interesting 
because the 20 stresses belong to the bottom chord 
members of the truss. The bottom chord is a natural load 
path but it can promote singularity in the optimization 
process, which however, can be avoided when approxi-
mate sensitivity is used. For a truss, a small number (in 
the range of two to six) of active stress and displacement 
constraints can be dependent.  

A traditional structural optimization problem contains 
dependent constraints. A small number of active stress 
and displacement constraints can be dependent. The 
multitude of implicit constraints reduces the rank of the 
coefficient matrix [Q]. Simple determinate sensitivity 
worked well because it restored the full rank for each of 
the six cases shown in Table 11. Earlier, we suggested 
(Kolonay et al., 1998) that a set of independent constraints 



 
 
 
 

Table 11. Rank of sensitivity matrix for a 20-bay truss. 
 

Case  Set of constraints Determinate Analytical 
 Number Constraints Rank of sensitivity matrix 

1 2 g1, gx2 1 2 

2 3 g4, gx5, gx6 2 3 

3 5 g68, gx69, gx70, gx71, gx72 4 5 

4 6 g1, g2, ..., g6 5 6 

5 6 g1, g2, ..., g6 5 6 

6 20 g2, g7, ..., g67 19 20 
 

 
should be separated out of the given stress and 
displacement constraints by using a singular value 
decomposition algorithm. The exercise has to be perfor-
med before the generation of each search direction. This 
technique works well for small problems. For larger prob-
lems, the decomposition process increases the numerical 
burden in optimization, which is already computationally 
intensive. The current recommendation is to use simple 
determinate sensitivity because it restores the full rank of 
the matrix [Q] and converges more rapidly. 

 
Adjustment for the stiffness method 
 
Design is stress driven both for stress and displacement 
limitations. The area of a truss bar for stress limitation 
can be updated as  . Likewise, the displacement 

A
new

    0  A
old  

formula  X  JGF  can be manipulated to obtain an area  
update formula for the stiffness limitation (Patnaik et al., 
1998). The two features make the method of force an 
attractive tool for design applications. We, however, rea-
lize that the stiffness method is very popular. The ques-
tion is, ―Can sensitivities be approximated when the stiff-
ness method is used as the analysis tool in optimization?‖ 
Such an approximation is straightforward for the stress 
constraints. It may pose a challenge for the displacement 
limitation because it is a global variable. In the stiffness 
method, the stress sensitivity can be obtained by dividing  
the force or stress parameters (F or ) by the square of 
area or area, respectively, –F/A

2
 or –/A. The force or 

stress output of a stiffness code can be adjusted to obtain 
the approximate sensitivity for the stress constraints.  

The difficulty encountered in calculating the approxi-
mate displacement sensitivity is illustrated by considering 
the three-bar truss as an example. Consider one term in 

the derivative of the first displacement X1  with respect to  
the area A1. For simplicity, one load component is set to 
zero, Py = 0. The closed-form derivative can be written as 
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The procedure of separating the sensitivity into determi-

nate and indeterminate factors in Equation (8) cannot be 
directly extended to the stiffness method, such as for 
example in Equation (12). The stiffness method, in gene-
ral, appears to have two major impediments for design 
calculations. 
 
1) The method has fewer equations m than the number of  
design variables n: m  n. The three- bar truss has three 
design variables, three bar stresses, but there are only 
two stiffness equations. Three equations are required to 
size the three bar areas, like F1 F2 F3  

. In 
A

1 


 0  
,
 
A

2 


 0  
, and

 
A

3 


 0  
other words, it is not easy to link bar areas to 
displacements. At best, this link would provide a relation-
ship of three design variables to two displacements, and 
it would not be a one-to-one mapping. 
 
2) The stiffness method does not allow free movement 
between analysis variables like IFM, which allows move-
ment from force to displacement, {X} = [J][G]{F}, and vice 

versa, {F} = [G]
–1

[B]
T
{X}. The two formulas, along with 

their governing equation, [S]{F} = {P}, make IFM a very 
attractive tool for sensitivity calculation and design opti-
mization. 
 

In the stiffness method, the sensitivity expression given 
by Equation (9) can be used provided the matrix [J] can 
be approximated. For static response only, it can be 

approximated  as BB
T
 
1

  
T
  The  generation  of  the 

 

J    . 
 

     

  0  
 

equilibrium matrix is straightforward because this, in 
essence, is the concatenation of the transformation 
submatrices used to change the local to the global  
coordinate systems. The inverse of BB

T  cannot be avoi-
ded, except that [B] is a very sparse matrix. 
 
 
Extension to other structure types 
 
Extension of the approximate expressions is straight-
forward for beams and framework. Consider, for exam-
ple, a beam with moment as the analysis variable and 
moment of inertia I and depth d as the design variables. 



 
 
 
The flexure formula can be differentiated to obtain the 
approximate sensitivity for stress constraints: 
 

 d            
 

 M   
  M d  d M (13)   2    
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The derivative of the moment in the displacement formula 
 X  JGF  would provide the approximate sensitivity of the 
stiffness constraints. In other words, in IFM, the 
generation of the closed- form and approximate 
expressions for beams is quite straightforward. The logic 
can be extended for framework that would require a 
mixing of the truss and beam expressions. Then compu-
ter software has to be developed to compare design 
optimizations using approximate and analytical sensitivi-
ties for such structures. The exercise is worth the effort 
because singularity can be eliminated to make 
optimization robust for flexural structures. 
 
Generalization of sensitivity approximation 
 
It is straightforward to extend the sensitivity-approxi-mation 
concept to a general type of structure. For illustration, 
consider the example of a stress constraint, g(x) which is a 
function of design variables (x). The constraint can be 
expressed as a product of an explicit function F(x) and an 
implicit function R(x) as, (see also  
Equation 5). 
 

g  x  F (x).R(x) 

 
Its gradient can be written as: 

 

simpleRe tain  simpleRe tain 
 

g  x  
  calculationint ens iveD ROP     

RF  FR  RF  
 

simpleRe tain  
The proposition is to retain the first term   RF    in the  
gradient expression. This term is simple to calculate. Use 
of this simple term eliminated singularity in structural 
optimization because it has a full row rank. The 
recommendation is to drop the second term 

 

calculationint ensiveDROP 

 because  its  generation  is 
 

FR 
 

computation intensive and its retention reduces the rank 
of the sensitivity matrix, which makes structural 
optimization a singular problem. In the paper the first and 
second terms are referred to as the determinate and 
indeterminate factors, respectively. 
Consider a plate flexure problem as an example. Its 
thickness (h) is the design variables and it has two principal 

moments M1 and M 2 . The von Mises stress,  j   
which can be used to define the stress constraint, can be 
written as:  

          

    

 6  
     

(15) 
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The gradient of von Mises stress can be obtained as: 

 
simpleretain 

 jplate 
 h j   12  M1

2 hi   M2
2 hi   M1 hi  M 2 hi  (16)  
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The gradient is simplified by retaining the first simple 

term which can be generated with a trivial amount of 
computation as: 
 

simpleretain 

 jplate 
 h j   12   M1

2 hi   M2
2
 hi   M1 hi  M2 hi  (17) 
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Let us compare the gradient expression for the plate 
flexure problem in Equation 17 to the same for a truss 
bar: 
 
 

 

 

j  

 Fj   
 

 truss A   

 (18)  
  

j   A
2
j   

  

contained n1 plate   and   n2 truss   elements.   The  
approximate gradient concept is independent of structure 
type and it can be used in finite element analysis. 
Likewise, the gradient of displacement can be 
approximated for a general type of structure through the 
flexibility matrix. 
 
CONCLUSIONS 
 
There are numerous dependent constraints in the design 
optimization problem of an indeterminate truss. A small 
set of stresses can be dependent. A stress also can 
depend on a few displacements. A truss design with 
many sets of dependent constraints may not be a well-
posed mathematical programming optimization problem. 
However, it is a real-life industrial design problem. In 
optimization calculations, all constraints should be used 
in defining the feasible region. Sensitivities of only the 
independent constraints should be used to calculate the 
direction vector. The independence criterion will be 
satisfied when the proposed simple determinate design 
sensitivity is used. The optimum solution was reached 
with the determinate sensitivity even though the search 

 The simplified gradient expressions (Equation 17 and 18) 
are analytically similar. The term in equation (17) or in 
equation (18) can be arranged along the diagonal of a 
matrix for a structure made of n - number of plate or truss 

(14)
 elements. Likewise it can be arranged along the diagonal of a matrix of 

dimension n1 + n2 when the structure 



 
 
 
 
directions differed for the determinate and analytical 
sensitivities. The use of simple determinate sensitivity 
substantially reduced the CPU time to solution. The 
integrated force method is an efficient analysis tool for the 
calculation of determinate sensitivity in particular and for 
design application in general. The concept of using 
approximate sensitivity in design optimization should be 
extended to flexural structures like beams and 
framework. 
 

ABBREVIATIONS: Ai bar areas; [B]   m  n 
equilibrium matrix; [C] r    n  compatibility matrix;  

search direction; ddeterminate , danl search directions 

for determinate and analytical sensitivities; E Young’s 
modulus; F member force; [G]  n  n flexibility matrix; gi 
 
 

 

i
th

 constraint; [g] sensitivity matrix; [J] first  m  rows of 
[[S]

–1
]
T
; m  number of displacements; n number of 

internal forces; {P} load vector; qcc  number of entries in 
a row of the compatibility matrix [C]; qee  number of 
entries in a column of the equilibrium matrix [B]; r = n = m 
number of dependent members or compatibility 
conditions; [S] n  n IFM governing matrix; uj    nodal 
displacement; ujo limitation on nodal displacement; W 
weight; x, y, z coordinates; i   weight density for i

th
 bar; 

i   bar stress for i
th

 bar; 0 allowable stress. 
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