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A fundamental prerequisite for effective land management is an understanding of soil properties. 
Conventional laboratory analysis has long been used to evaluate soil qualities, but it is expensive and 
time-consuming. As a result, alternative, quicker, and less expensive methods for soil analysis must be 
developed. Particular focus has been placed on chemometrics and infrared reflectance spectroscopy in 
recent years. Mid-infrared (MIR) and near-infrared reflectance (NIR) spectroscopy methods are quick, 
easy, and non-destructive ways to measure a variety of soil characteristics. The purpose of this study is 
to use infrared spectroscopy to characterize soil. For soil samples taken in the Democratic Republic of 
the Congo's Sud-Kivu province, this approach was used to forecast the soil's pH, soil organic C, total N, 
exchangeable Al, Ca, Mg, and K, CEC, and texture. Using a spatially-stratified random sampling design, 
530 composite soil samples were collected from two sites (Burhale and Luhihi) at two depths (0–20 and 
20–40 cm) over a 100 km2 area. It takes roughly two minutes to analyze a soil's MIR spectrum after 
minimal sample preparation. Disparities in soil depth and land use (cultivated versus non-agricultural) 
were assessed between the two sites. Standard wet chemistry techniques were used to evaluate a 
random subset of the samples (10%), and calibration models were created utilizing MIR data to estimate 
the soil parameters for the entire collection of soil samples. The partial least squares regression (PLS) 
approach produced solid predictions for all parameters with acceptable coefficients of determination 
ranging from 0.71 to 0.93. IR demands a large initial expenditure, despite being inexpensive for 
assessing soil parameters. Therefore, in order to make this technology usable in underdeveloped 
nations, technical and material help is required. 
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Education Soil One of the main causes of global food 
insecurity is the loss in soil fertility. Because farmers are 
unable to employ appropriate practices for yield 
development, the lack of precise information on soil 
management and sustainability at the farm level lowers 
soil productivity. The majority of research centers lack the 
necessary equipment to conduct research, and the 
majority of information pertaining to the nutrient content of 
the soil is unavailable. The majority of farmers cannot 
afford the extremely high laboratory fees associated with 
soil analysis. Due to the several steps required, the 
majority of research centers' existing wet chemistry 
procedures for soil analysis take a lengthy time to 
produce findings. Particularly in SSA, where soil fertility 
depletion is more severe, there is a pressing need for 
quick and sustainable methods of soil analysis to 
enhance fertilizer use and boost agricultural production. 
The efficiency of MIR in conducting quantitative analyses 
of soils, particularly soil carbon, has been shown in 
numerous investigations (Reeves et al., 1999; Shepherd 
and Walsh, 2002; Christy, 2009). Numerous qualities 
indicated by MIR spectra typically change only slowly in 
soils, meaning that once evaluated, re-analysis may not 
be necessary for that property or may only be necessary 
after a considerable period of time. Faster and less costly 
data collection methods are needed to quantify the many 
soil characteristics in order to conduct a thorough 
analysis of the roles played by a variety of soil physical, 
chemical, and biological characteristics in terrestrial 
ecosystems. This is particularly true for applications 
requiring exact spatial resolution of soil parameters, such 
as precision agriculture. Recent research has 
demonstrated that multivariate chemometrics and infrared 
reflectance spectroscopy can be used to quickly and 
affordably examine certain chemical and physical 
properties of the soil both qualitatively and quantitatively. 
As a result, infrared spectral investigations are perfect for 
inventorying soil resources (Minasny et al, 2008). 
Because of its quick, non-destructive, low-cost 
measurements and ability to identify multiple soil 
parameters at once, infrared reflection (IR) spectroscopy 
has drawn interest from soil scientists as a potential 
method for better soil analysis. The time has come to 
invest in soil health in order to boost productivity. Even 
extension services and research institutions that can help 
farmers in SSA understand the health of their soil do not 
provide them with knowledge on managing soil fertility. 
Infrared is a new technique for soil analysis that is quick 
and affordable, but it needs to be verified before being 
widely used. At the moment, there is little data to support 
its accuracy, which limits its application when it comes to 
land management decision-making. Therefore, the goal 
of this study is to evaluate the precision of this novel 
approach and utilize the findings to examine variations in 
soil samples taken from various locations. 

 

MATERIALS AND METHODS 

 

The study was carried out in the South Kivu province's 
eastern DRC. This area is described as by highland 
characteristics that receive a lot of rainfall and have a 
very high population density (Farrow et al., 2006). Figure  

 

1 illustrates the two sites chosen for this investigation: 
Burhale and Luhihi.  
Due to nutrient mining and erosion, overpopulation 
degrades South Kivu's soils. It also reduces the amount of 
land available for raising livestock, which lowers the number 
of animals that can provide manure for farmers (DSRP, 
2005).  
Agriculture is the primary industry in the area. Pigs, sheep, 
goats, chickens, and cattle are examples of traditional 
livestock. The Uvira plain is home to South Kivu's largest 
animal production area. However, because of overcrowding, 
there is less grazing space in Burhale (Walungu) and Luhihi 
(Kabare), which has resulted in fewer cattle. There are also 
large plantations of quinquina, tea, and coffee in the region 
(Mateso et al., 1998). South Kivu has a wide variety of soil 
types, most of which are influenced by their parent geology 
(Mateso, 1998). Based on the parent material, the soils of 
South-Kivu can be subdivided into four major groups: 

1. Soils that have recently formed on volcanic substrate; 

2. Soil developed on old volcanic substrate, mainly basaltic ; 

3. Soils formed on old sedimentary and 
metamorphic rocks (cover extensive areas) and, 

4. Alluvial soils and lacustrin and fluviatile deposits of the 
plains of Rusizi. 

The 530 samples that were gathered were all scanned 
infraredly utilizing spectra of infrared reflectance between 
400 and 7000 cm–1. Just a few grams of dirt (about 20 to 30 
mg) were collected for the samples. Using an agate pestle 
and mortar, air-dried materials were ground to a fine powder 
(around N<100 μm). Aluminum micro titer plates contained 
96 wells; an empty well was used to measure the 
background signal (Figure 2) (ICRAF, 2009,). The samples 
were loaded into the plates using a micro spatula to fill the 
6-mm-diameter wells and level the soil, being careful not to 
spill into nearby wells. To adjust for variations in 
temperature and air humidity, background measurements of 
the first empty well were made prior to each individual 
measurement (Mevik and Wehrens, 2007). Since aluminum 
doesn't absorb infrared light, it can be used as a reference 
material (Terhoeven et al., 2010). To reduce specular 
reflectance, the bottoms of the Al wells were roughened. In 
order to account for within-sample variability as well as 
variations in particle size and packing density, soil samples 
were fed into four replicate wells, each of which was 
scanned 32 times (figure 2). The four spectra were then 
averaged.  
According to the AFSIS technique, only 60 samples (about 
10% of the 530 samples collected as advised by AFSIS) 
were subjected to wet chemical analysis (Vagen et al 2010). 
This indicates that the 60 samples underwent two analyses: 
wet chemistry and scanning.  
The PLS (partial least squares regression) model, which 
combines the two data types for the prediction, was used to 
assess the prediction quality (Naes et al, 2002). The quality 
of the prediction was assessed using the root mean square 
deviation (RMSD) and coefficient of regression (R2) for the 
measured and estimated values (Tillmann, 2000; Brown et 
al., 2005). R software version 2.7.1 was used for the 
computations and statistical analysis (R Development Core 
Team, 2008). The strong R2 and low RMSD indicate that 
the calibration and prediction were successful; the estimated 
values are more in line with the actual values determined by 
direct wet chemistry. Good forecasts  
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are regarded as having an R2 ≥ 0.75 for such a 
diversified data set (Shepherd and Walsh, 2002; Chang 
et al., 2001). Predictions with an R2 between 0.65 and 
0.75 are deemed satisfactory, while those with a lower 
value are deemed bad (Shepherd and Walsh, 2002; 
Chang et al., 2001; Terhoeven et al, 2010). 

 
RESULTS AND DISCUSSION 

The Soil parameters prediction Soil organic carbon 

Soil organic C was well predicted for the validation set 

(R2= 0.72 and RMSE = 1.07; (Figure 4.1. ). This shows 

that the prediction for this parameter was good. This 
finding agrees with other soil studies (Barthe et al. 2008; 

Ludwig et al. 2008). The results also agree with those of 

Rossel et al. (2006) who reported similar accuracy (R2 = 

0.73) for a much less diverse validation set of 118 

samples  from  18 ha agricultural field in Australia. 

Similarly, from a global study, Terhoeven et al. (2010) 
reported an R2= of 0.8 Soil organic carbon (SOC) is a key 
attribute of soil quality, which influences a variety of 
biological, chemical and physical properties of soils 
(Carter, 2002). Consequently, methods to accurately 
determine SOC are necessary to achieve a better 
understanding of the nature and dynamics of SOC 
(Denm8ef et al., 2009). Soil organic carbon is an 
indication of soil organic matter content, which acts as 
both a source and sinks for nutrients. Soil organic carbon 
is linked to soil chemical, physical and biological health, 
and is strongly correlated with soil nitrogen supply in term 
of soil fertility management. The satisfactory prediction of 
SOC (R2<0.75) helps to monitor the soil status from the 
study area for a sustainable soil management. A study in 
Canada reported good prediction (R2=0.92) (Madari et 
al., 2006) than the current study. However, according to 
Shepherd and Walsh (2002) and Chang et al. (2001) 
predictions of R2 ranging from 0.65 to 0.75) are 
satisfactory. 

 

          Extractable Aluminum 

Extractable Extractable Aluminum was also well 
predicted t (R2= 0.71 and RMSE = 1.07 (Figure 4.2). 



4 

 

 
 

 

 
Figure 4.1: Correlation between measured and predicted values of Ca:Mg ratio 

 

Figure 4.2: Correlation between measured and predicted values of Ca:Mg ratio 

 

 

Based on the given prediction criteria, this indicates a 
good forecast of this parameter (Terhoeven et al., 
2010). An R2 of 0.71 was obtained by several 
investigations (Brusetal, 2002; Borggaard et al., 2004). 
But according to Madari et al. (2006), who used 
Canadian soils, their results showed a superior 
prediction (R2=88) than the current study that may 
otherwise be lost from the soil rooting depth. Better 
phosphorus control will be encouraged by less 
expensive methods of measuring iron and aluminum 
oxide concentration.  
 

lessen the pollution caused by nutrients. The MIR's 
prediction of this parameter opens up a new area for soil 
fertility monitoring in the DRC's eastern highlands.  

 

      Calcium: Magnesium ratio 

 
The coefficient of correlation between actual 
measurements and predictions by PLS model for Ca: Mg 
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Figure4.3: Correlation between measured and predicted values of Total N 

 

ratio using the independent validation set of 60 samples 
was R2 of 0.81 (Figure 4.3). 

 
Compared to the results obtained in Australia 

(Minasny et al., 2009), which showed that MIR cannot 
accurately predict the Ca:Mg from that region, the current 
study provided a better prediction (R2=0.81). However, 
Dunn et al. (2002) found that the 178 samples they 
collected from Canada showed the currency of Ca/Mg 
ratio prediction (R2=0.81), which is consistent with the 
current findings. 

 

Exactable Calcium 
 

The R2 values and RMSE indicated that the 
extractable calcium prediction was good (Figure 4.4). 
The model for the soil Ca analysis was validated since 
the coefficient of regression was high (R2 = 0.93), 
indicating a solid prediction of the parameter. This 
indicates that based on the successful model 
prediction, Ca, which was predicted in the current 
study, may be employed appropriately for evaluating 
soil aptitude.  
The study's validation predictions for Ca are superior 
to those of other authors' findings. For instance, 
McCarty and Reeves (2006) reported an R2 of 0.77 for 
extractable calcium in a study conducted in the USA, 
which is still less than the current study.  
Similarly, R2 = 0.84 was obtained for prediction values 
by Viscarra et al. (2006) and McCarty and Reeves 
(2006). Additionally, the model created in this study 
produced superior results than others published 
worldwide, such as Terhoeven et al. (2010), which 

reported R2 = 0.61 with an RMSE of 1.64. The current 
study's accurate Ca prediction helps with soil nutrient 
evaluation and enables the recommendation of using an 
IR scanning approach for this element.  

 

Total Nitrogen (TN) 
 

In terms of the R2 and the RMSE, Total Nitrogen 
provided a decent prediction (Figure 4.5). There is a good 
correlation between the direct and anticipated values, as 
indicated by the regression coefficient of 0.76. This 
accurate TN prediction opens up a new way to quickly 
evaluate this soil element. The most crucial soil nutrient 
for agricultural development in SSA can now be 
analyzed, which opens up new avenues for soil nutrient 
assessment.  
 

These findings are consistent with those of other 
writers. For instance, Minasny et al. (2009) found that the 
same ratio (R2=0.76) was found in a study that was done 
on Australian soils. The similar value of R2=0.76 was 
reported by Reeves et al. (2006), Cozzolino and Moro 
(2006), Barthe et al. (2008), and Vasques et al. (2009) in 
research conducted in areas with significant 
agroecological variability. However, given the prediction 
is good (R2>0.75) by the criteria, the accuracy is still 
good. This indicates that the prediction's accuracy is also 
influenced by the region's soil variability. Consequently, 
the fact that the soil samples utilized in the Canadian 
investigation came from the same region and belonged to 
the same soil type may have contributed to the high 
calibration performance that was noted (Reeves, 2006).  
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Figure 4.4: Correlation between measured and predicted values of pH 

 

Figure 4.7: Correlation between measured and predicted values of extractable K 

 

Soil pH 
 

With R2 = 0.80 and RMSE = 2.21, the pH of the soil 
was accurately predicted (Figure 4.6). These results 
are consistent with those of McCarty and Reeves 
(2006), who used MIR analysis to analyze 544 soil 
samples from 272 locations in a single field in the 
United States (R2 = 0.8). Similarly, Terhoeven et al. 
(2010) found that their research of the Australian 
landscape yielded an RMSE of 0.75 and an R2 of 0.8 
worldwide. The biggest issue with land degradation in 
the DRC is soil acidity, which is currently reducing 
agricultural output. The management of soil acidity will 
be substantially aided by methods that support the 
measurement of soil pH, the calculation of the rate of 
lime needed to reach an acceptable pH, and the 
quality of lime products.  
 
 

 
Janik and Skjemstad (1995) reported an R2 of value 0.72 
(acceptable prediction) for 291 Australian soils, which is 
marginally better than the results of the current study. 
According to Reeves (2009), additional elements 
including organic acids and carbonates affect infrared's 
capacity to forecast pH. These results of satisfactory 
prediction suggest that MIR spectroscopy may be able to 
forecast this parameter.  

 

Extractable Potassium 

Extractable potassium was well predicted with the 
regression model having R2=0.87 (Figure 4.7). 
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Figure 4.8: Correlation between measured and predicted values of extractable P 

 

Figure 4.9: Correlation between measured and predicted values of CEC 
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These findings demonstrate how well potassium may be 
predicted spatially within the research area. The model is 
helpful for this parameter because of its accurate 
prediction of K (Shepherd and Walsh, 2002; Chang et al., 
2001).  
This is in line with the findings of Hartemink (2006) and 
Lark (2009), who discovered that 178 samples from the 
Australian landscape had good K predictions. The 
possibility of evaluating the soil condition in the study 
area using the estimated values for K is made possible by 
the prediction's accuracy. 

 

Extractable Phosphorus 

In this investigation, extractable P was accurately 
predicted with R2=0.89 (Figure 4.8). This suggests that 
the model's P determination is validated. These 
findings are in good agreement with those of a study 
done on Australian soils by Minasny et al. (2009). They 
also concur with those of Sellitto et al. (2009) from 
India, who reported an R2 of 0.90, and Hartemink 
(2006) and Madari et al. (2006), who reported values 
of R2 = 0.85 and 0.93, respectively, from the Canadian 
landscape.  
Although Hartemink (2006) showed a satisfactory 
prediction of this parameter with an R2 of 0.57, several 
Canadian studies have reported poor predictions, such 
as those made by Madari et al. (2006) from the 
Canadian landscape and Sellitto et al. (2009) from 
India. This excellent modeling of P in the eastern 
Democratic Republic of the Congo creates a new 
avenue for evaluating this crucial crop production 
nutrient.  

 

Cation Exchangeable Capacity 
 

This method's validation for CEC yielded an R2 value 
of 0.84, suggesting that CEC was accurately predicted 
(Figure 4.8). Several research (Dunn et al., 2002; Sellitto 
et al., 2009; Richter et al., 2009) have shown that MIR 
offers accurate forecasts for CEC in various locations, 
such as India, Canada, and the US, respectively. Similar 
prediction accuracy for this measure was demonstrated 
by Pirie et al. (2005) for 415 samples from southeast 
Australia.  
In the current study area, the R2 value for CEC is 0.84 
(Figure.4.9), indicating that the direct and estimated 
values for this parameter are closer to the expected 
values. Similar to Pirie et al. (2005) from soils in south 
Australia, Sellitto et al. (2009) from India likewise 
obtained strong predictions for this parameter. The soil 
science research can bypass many of the limitations of 
traditional laboratory analysis because to this excellent 
modeling of CEC.  

 
 

Soil physical particles prediction 
 

Particle size effects on light transmission and reflection, and 
strong absorption features exhibited by water, explain the 
accurate predictions for texture (Cécillon et al, 2009; Chang 
et al., 2001). 

Predictions for particle size were satisfactory for clay (R2 
= 0.74 and RMES = 1.05); sand (R2;= 0.81 and RMES = 
1.08) and silt (R2 = 0.84 and RMES = 1.06). 
These results are broadly similar to those of previous 
researchers (McCarty and Reeves, 2006; Pirie et al., 2005). 
Terhoeven et al, 2010 got similar results globally (clay (R2 = 
0.73 and RMES = 1.85). 

All these tree physical parameters respond to the 
calibration requirement (Chang et al., 2001; Shepherd and 
Walsh, 2002; Terhoeven et al, 2010) and validation of the 
results is correct. 

       CONCLUSION 

This study sought to determine whether a new method of 

soil characterization based on the Infrared Scanning (IR) 

technology might provide quick and accurate soil property 

quantification. Overall, the results demonstrated a good and 

satisfactory prediction model with above 75% for both the 

physical features of the soil and all of the chemical 

parameters under investigation (pH, Al, P, N, Ca, K, PSI, 

Exchangeable acidity, and CEC). Phosphorus had the best 

prediction of any of the factors studied (R2=0.93), while all 

other parameters had R2 values greater than 0.75, with the 

exception of SOM and TN, which had R2 values of 0.73 and 

0.71, respectively. It is suggested that the IR scanning 

method be used to determine the qualities of soil because it 

predicts all chemical parameters well. The approach is also 

quick and cost-effective. It took two days to scan the 530 

samples, when using traditional soil analysis techniques 

could have lasted over two months. With R2 values of 0.81, 

0.84, and 0.74 for sand, silt, and clay, respectively, the 

prediction of soil particles was likewise good for all three 

parameters. This suggests that the infrared scanning 

method is a trustworthy way to determine the texture of soil.  

This method is still relatively new, though, and few scientists 

have been able to apply it. Even at a low level, this 

approach cannot be employed without the combination of 

wet chemistry results. To monitor soil and land degradation 

in underdeveloped nations, further work is required to 

enhance the application of infrared scanning. IR demands a 

large initial expenditure, despite being inexpensive for 

assessing soil parameters. Therefore, in order to make this 

technology usable in underdeveloped nations, technical and 

material help is required. 
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