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Previous studies on the issue of imperfect quality inventory assumed the direct cost of the product was 
irrelevant and the screening processes were perfect. However, in practice, the purchase price is some function 
of the quantity purchased and the inspection testing may fail to be perfect due to Type 1 and Type 2 errors. 
Thus, this paper proposes a cost-minimizing Economic Order Quantity (EOQ) model that incorporates 
imperfect production quality, inspection errors (including Type 1 and 2), shortages backordered, and quantity 
discounts. It is assumed that production, in which 100% screening processes are performed with possible 
inspection errors, is received with defective quality items and the supplier offers all-unit quantity discounts to 
the buyer. An algorithm is developed to determine the optimal lot size, shortages and purchase price. Three 
numerical examples are provided to illustrate the proposed model and algorithm. Numerical computations 
show that the algorithm is intuitively simple and efficient. Managerial insights are also drawn. 
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INTRODUCTION 

 
The Economic Order Quantity (EOQ) model has been 
widely used in inventory management for a long time. 
There are a great many excellent studies that contributed 
to this topic (for example, Yanasse, 1990; Mehra et al., 
1991; Tersine and Barman, 1991; Pantumsinchai, 1991; 
Min and Chen, 1995; Brill and Chaouch, 1995; Wee, 
1993). One unrealistic assumption of the EOQ model is 
that all units produced are of good quality. Hence, the 
issue of inventory model with imperfect quality has 
received considerable attention by researchers. There 
are a great many papers that have dealt with this topic. 
Specifically, Rosenblat and Lee (1986) assumed that the 
defective items could be reworked instantaneously at a 
cost and found that the presence of defective products 
motivates smaller lot sizes. At the same time, Porteus 
(1986) developed a simple model that captures a 
significant relationship between quality and lot size and 
observed similar results. Note that the above papers  
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implicitly assumed the defective items could not be 
salvaged.  

Unlike the assumption of Rosenblat and Lee (1986) 
and Porteus (1986), Salameh and Jaber (2000) assumed 
that the defective items could be sold in a single batch at 
the end of a 100% screening process and found that the 
economic lot size quantity tended to increase as the 
average percentage of imperfect quality items increased. 
Related to this task is the paper by Cardenas-Barron 
(2000) where an error appearing on Salameh and Jaber’s 
work (2000) was corrected. Thereafter, Chan et al. (2003) 
proposed a non-shortage model similar to that in 
Salameh and Jaber (2000), where products are classified 
as good quality, good quality after reworking, imperfect 
quality and scrap. With respect to the inventory model 
proposed in Salameh and Jaber (2000), Chang (2004) 
fuzzified the defective rate and the annual demand and 
then derived the corresponding optimal lot sizes.  

Papachristos and Konstantaras (2006) re-studied and 
developed sufficient conditions for the models given by 
Salameh and Jaber (2000) and Chan et al. (2003). 
Recently, Wee et al. (2007) and Eroglu and Ozdemir 
(2007) extended the work of Salameh and Jaber (2000) 



 
 

 

 

to the case with shortage back-ordering. In their work, 
they assumed the back-order quantity should be 
eliminated at the beginning of a replenishment period with 
“perfect” items in the model. Unfortunately, Wee et al. 
(2007) neglected the truth and mistakenly employed 
unscreened items from the received lot to replace the 
defective items. Furthermore, Maddah and Jaber (2008) 
employed the renewal process theorem to rectify a flaw in 
an EOQ model with unreliable supply, characterized by a 
random fraction of imperfect quality items and a 
screening process, developed by Salameh and Jaber 
(2000). Note that the works of Eroglu and Ozdemir (2007) 
  

and Maddah and Jaber (2008) are based on the 
 

assumption. However, Papachristos and Konstantaras 
(2006) questioned the validity of this assumption, but 
failed to provide a correction to this defect and pointed 
out that this condition appearing in Salameh and Jaber’s 
(2000) paper could not guarantee that a shortage will not 
occur. Fortunately, Jaber et al. (2008) assumed the per-
centage of defective items per lot according to a learning 
curve, which was empirically validated by data from the 
automotive industry. They found that the inspection rate 
was much higher than the demand rate and with learning 
effects and the percentage defectives per shipment 
reduce to a small value. 
 

Lin (2009) further suggested that if the defective rate is 
within a boundary (for example, if defective rate is with 
uniform distribution), shortages will not occur under the 
highly screening rate. 
 

Another unrealistic assumption for imperfect quality 
inventory models is that the screening processes are 
perfect. In practice, inspection testing fails to be perfect 
and two types of errors (Type 1 and 2) may occur. In the 
first error type, good items will get mis-identified as 
defectives and thus, result in the necessity of producing 
additional items. The second error type will result in the 
mis-identification of defectives as good items and then 
incur a penalty cost. Lin (2010) considered a single ven-
dor, single buyer supply chain systems in which products 
are received with defective quality. A 100% screening 
process is performed with possible inspection errors 
(Type 1 and 2). Later, Yoo et al. (2009) proposed a profit-
maximizing imperfect-quality inventory model with two 
types of inspection errors (Type 1 and 2) and defective 
sales return that determines an optimal production lot 
size. 
 

Note that all previous studies in the topic of inventory 
models with imperfect quality assumed the direct cost of 
the product was irrelevant However, in practice; the pur-
chase price is some function of the quantity purchased. 
Generally, quantity discounts can provide economic 
advantages for both the buyer and vendor (Burwell et al., 
1997; Ji and Shao, 2006). Specifically, quantity discounts 
can provide the buyer a lower per-unit purchase cost, lo-
wer ordering costs and decreased likelihood of shortages 
(Burwell et al., 1997). Therefore, this paper proposes a 
cost-minimizing economic order quantity model that 

 

 

 

 

 

incorporates imperfect production quality, inspection 
errors (including Types 1 and 2), shortages backordered, 
and quantity discounts. Specifically, this paper 
investigates the inventory model for items, where 100% 
screening processes are performed with possible 
inspection errors, with imperfect quality and shortage 
backordering under all-unit quantity discounts. 
 

 

NOTATION AND ASSUMPTIONS 

 

Following Wee et al. (2007), the notation used in the 
present paper is in the following: 
 

D The demand rate 
K The ordering cost per order 
b The backordering cost per unit 
dThe screening cost per unit 
jDiscount category  
m The penalty cost for replacing one unit of defective 
returned by the customer.  
pThe defective percentage for each order  
r The holding cost per unit time, expressed as a fraction 
of dollar value  
xThe screen rate, x >>D 
yorder size  
α Type 1 error; that is, the probability of good items will 
get mis-identified as defectives  
β Type 2 error; that is, the probability of defectives will get 
mis-identified as good items 

cj  The unit purchasing cost of jth level in the cost 
 

schedule 
 

yc j  The EOQ under the jth level of purchase price  

B c j  
 

The  maximum  backordering  quantity  under  the  

  
 

jth level of purchase price 
 

The total cost per cycle if EOQ is set at y 
 

units and backordering quantity is set at B units under jth 
level of purchase price.  

* The superscript representing optimal value. 

 

In all-unit quantity discounts, the discount price applies to all units in 

the order quantity. Let 
c
 j be the unit price of jth level, 

y
 j be the jth 

lowest quantity ( 
y
 j −1 


 
y
 j ). If 

y
 j −1 ≤ 

y
 

 
y
 j , 

 

then the unit price is 
shown in Table 1.  

The assumptions in this paper are as follows: 
 

(1) The demand rate is known, constant, and continuous. 
(2) The lead-time is known and constant. 
(3) The replenishment is instantaneous.  
(4) The screening process and demand proceeds 
simultaneously, but the screening rate is much higher 
than demand rate, x>>D.  
(5) The defective items  exist  in  lot  size  y  in  which  the 

c
 
j
 . The price discount schedule is 

TCyc j , Bc j  

p ≤ 1 − D  x 



  
 
 

 
Table 1. Price discount structure.  

 

 j y j −1  ≤  y   y j C 
    

 1 0  y   y1 c1 

 2 y1  ≤ y  y2 
c

2 
 . . . 

 . . . 

 . . . 

 n y n−1  ≤  y  ∞ cn 
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Figure 1. Behaviour of the inventory level over time. 

 
 

 

defective percentage p is constant. 

(6) Inspection errors may occur in which Type 1 error (
α

 ) and Type 2 

error ( 
β

 ) are constant.  
(7) A shortage is completely backordered and the 
screening time must be at least or greater than the 
expected value of the time to eliminate a backorder.  
(8) A single product is considered.  
(9) A penalty cost is incurred for each defective unit 
delivered to a customer. 

 
 
 
 
 

 

Furthermore, the rate of good-quality items inspected during t2  is 

modified as 
1

 
−

 
α

 
−

 
p1

 
−

 
α

 
−

 
β

 


 . A part of these good-quality items 

meet the demand with a rate of D and the remaining is used to 
eliminate backorders with a rate of 

1 − α − p1 − α − β x − D  x1 − α − p1 − α − β  − D  x  . The  
screening process is finished at the end of time interval of t3. To 
ensure that shortages will not occur, similar to Samalameh and 
Jaber’s (2000) work and Jaber et al.’s (2008) paper, within the 

screening time t3, the following condition, in which the screening 
rate is much higher than the demand rate, should hold: 
 

 
MATHEMATICAL MODEL 
 

Referring to Eroglu and Ozdemir (2007), the inventory level will reduce 

py unit at time t due to the withdrawal of defective items (Figure 1). 

However, in this paper, because inspection errors may occur during the 

100% screening process, the reduced inventory level should be 

modified as 


 
py1

 
−

 
β

 


 


 

1
 
−

 
p

 

yα
 


 unit at time t. 

 
 

≤ 1 − D  x, (1) 
 

Where, 
 α  p1 − α − β   

 

  
  

 

Let 
TC

 

yc
 
j
 

,
 
Bc

 
j
 


 be the total cost per cycle if EOQ is set at 

y units and the backorder quantity is set at B units under jth level of 



 
 

 

 

 
purchase price. Note that is the  sum of the  
ordering cost, the purchasing cost, the screening cost, the 
backordering cost, the penalty cost and the holding cost. Since this 
paper investigates an inventory model for items with imperfect 
quality and shortage backordering under inspection errors, two 
types inspection errors may occur: Type 1 and 2 errors. The Type 1 
error occurs if perfect items are mistakenly classified as defective, 
and it results in unnecessarily requiring more items with extra cost. 
The Type 2 error appears if imperfect items are mistakenly 
identified as perfect and it incurs a penalty cost. This paper 
considers the purchase price to be some function of the quantity 
purchased. Thus, the total cost can be written as follows: 
 

TCyc j , Bc j   K  c j  y  dy  bBt1   t2   2  pyβm 

 t 2   y   z   t 3 − t 2  z  z1  y   t − t1 − t 3  z1  
 

c 
j r     

 

 

    
 

   2  ,  

      
 

j  1,2,..., n 
(2) 

 

Now, referring to Figure 1, there are some findings shown below: 

 

The time, 

t
1
 , needed to add up to a backorder level of ‘B’ units is given 

by 
 

t1   B  D , (3)  

 

The time, 
t
 2 , needed to eliminate the backorder level of ‘B’ units under 

screening error consideration can be written as: 
 

t 2    B xA , (4) 

Where, A 1− − D  x  .  
 

By Equations (3) and (4), the value of z can be written as: 
 

z  y − 
1 − B  

 

A (5) 
 

 
 

 

The time, 
t
 3 , used to screen the ordered units, y, in each cycle is 

 

t3  y x    
(6)  

       
 

Thus, the value of (t 3 − t 2 ) in Figure 1 is given by  

   
 

t3 − t2  
z − z1  − y    

 

D 
   

(7) 
 

      
  

 

Furthermore, by Equations (6) and (7), the value of 
z

1 can be expressed 
as follows: 
 

z1   Ay − B     (8)    
 

Substituting Equations (3) - (8) into Equation (2), one has   
 

TCyc j , Bc j  c j 
 c j r 2 − D x1−    −D  x2

 2 
 

          

 d  pβmy  K      y  
 

 2  x   D   
  

 
 

 

 

 
 

 c j r1 −   Bycjrb1−B2
        

 

− 
 

 
              

 

D 2D1 − − D x , j  1,2,..., n (9) 
 

 

   
 

Since the replenishment  cycle  length  is  
t
 


 
y1

 
−

  


 
D

 ,  the total 
 

cost per unit time can be given as follows:    
 

TCU yc j , Bc j  
Dc j   d  βmp 

  DK 
 

c j ryθ 
− c j rB  

c j r  bB 
2
  

 

    

2 y1 −− D  x , 
 

      Ω yΩ2Ω  
 

j  1,2,..., n              (10)  
 

     

D2 − D  x 
       

 

    θ    1 −− D  x2
     

 

        
 

Where, 
Ω

 


 
1

 
−

    , x .    
   

Note that if the supplier does not offer quantity discounts and all 
items are perfect (that is, no screening process is needed), the  

study has 

t
3 


 

d
 


 
α

 


 
β

 


 

p
 


 

0
 , x → ∞ , and 

c
 
j
 


 

c
 . Therefore, in 

this case, Equation (10) is reduced to the classical EOQ model with 

shortages. 

 

SOLUTION PROCEDURE AND ALGORITHM 

 

To find the optimal lot size and the optimal backordering period 
under all-unit quantity discounts, let y be fixed. Taking the first and 

second  derivatives ofTCU yc j , Bc j 


 with  respect  to  B  will 
 

yield:           
 

 ∂TCU yc j , Bc j     c j r  bB   
 

   

 −c j r  
     

 

 

∂B 
 

y1 −− D  x , j  1,2,..., n(11) 
 

      
 

 ∂ 
2
TCU yc j , Bc j   c j r  b   

 

     

 
 

 0, 
  

 

 ∂B 
2
    y1 −− D  x j  1,2,..., n (12)  

           
  

 

Since the screening rate is much higher than demand rate and thus 

≤ 1 − D  x  
, TCU yc j , Bc j   

 

       is   convex   in   B.   Let 
 

dTCU
 

y
 

c
 j  

,
 

Bc
 j  


 

dB
 


 

0
 . The study has  

 

Bc j  
c j ry1 − − D  x      

 

         

(c j r  b) , j  1,2,..., n (13) 
 

  
 

        
  

 

Substituting Equation (13) into Equation (10) will yield 
 

TCUyc j  
Dc j   d  βmp 

  
DK 

 
c j ryθ 

− 
yc j r 2

 1 −    − D  x  
 

   

2c j r  b 
 

  Ω  yΩ2Ω  
  

, j  1,2,...,n  (14) 
 

Taking the first and second derivatives of 
TCUyc

 
j
 


 with respect y 

leads to 
 

∂TCU yc j    − KD  c j rθ  − c j r 2
 1 −− D  x   

 

     

2c j r  b 

 
 

∂y y 
2
 Ω  2Ω  j  1,2,...,n  (15) 

 

∂ 
2
TCU yc j  

 
2 KD 

 0 
    

 

           

∂y 
2
 y 

3
 Ω ,  j  1,2,..., n (16) 

 

   
  

TC yc j  , Bc j   



 
 
 

 

From Equation (16), we know 
TCU

 

yc
 
j
 


 is convex in y. Since 

the purchasing unit cost depends on the order quantity and thus has a 
different cost curve, we cannot directly obtain y

*
 from Equation (15). 

~ 

Thus, let 
y

 
j
 be the lowest point on each cost curve cj. By setting Equation 

(15) equal to zero, one has 
 

    

 

 

~ 

 

 2 KDc j r  b  
 

y
 j 

 

 

 
,  j  1,2,...,n  (17) 

 

c j rθ c j r  b − c j r 2
 Ω1 −− D  x 

 
  

 
It is clear that the denominator is greater than zero. To obtain the 
optimal solution, an algorithm, similar to Goyal (1995) and Lin 
(2010), is developed as follows: 
 

Step 1. Obtain the possibly maximum unit cost c
*
  as follows: 

 
* 
        

DK    cn ry n−1 θ 2 Ω
y

 n−1 1 −− D  x  
 

     1      cn r   
 

c  

    Dc
n     

   

−               

    y   2  

2c r  b       
 

      DΩ  

n −1 
           

 

                  n            
 

        

 

      
 

− 
  2 KDcn rθ cn r  b  − cn r 2

 Ω1 −− D  x       
 

                     

  

       

             

cn r  b 
            

 

                             
 

                               
 

                    c 
n 

≤ c 
j 
 c

*
  

 

Step 2. For each purchase price discount        , determine  

         
 

the total  relevant cost  

TCUyc
 j 

,
 

Bc
 j  from Equation  (14)  at 

 

order size given by                    
 

        
 

                 
 
 

 

                2KDc j r  b          
 

yc j 
 

 MAX  y j−1 ,                 

  

 
 

                  
 

              c j rθ c j r  b − c j r
2
 Ω1 −   − D x  

 

                               
 

and at shortage backordering given by            
 

Bc j   
c j ry1 −− D  x               

 

                        

 

c j r  b 
, 

              
 

                       
 

                             
 

where y  yc j .                    
  

 

Step 3. Compare all costs obtained in Step 2. The lowest relevant 

cost provides the optimal order quantity, 
yc

 
j
 

 and optimal shortage 

backordering, Bc j . 

 
In the next section, the study will employ the example to illustrate 
the model and algorithm developed in Sections 3 and 4, 
respectively. 

 

NUMERICAL EXAMPLES 
 
To illustrate the above model and algorithm, consider the 
following examples. 

 

Example 1 
 
The parameters needed for analyzing the models 
developed in this paper are thus given: 

  
  

 
 

 

Demand rate, D =50000 units/year, 
Ordering cost, K =$100/cycle, 
Screening rate, x =1 unit/min  
Screening cost, d =$0.5/unit 
Backordering cost, b =$20/unit/year 
Penalty Cost, m  = $100/unit 
Defective rate, p = 0.02 

Type 1 error, α = 0.01 

Type 2 error, β = 0.01 

A percentage of unit purchase cost, r =0.2 
 
Assume that the supplier offers a purchase price discount 
schedule as shown in (Table 2). Considering the cost 
structure category and using the algorithm developed in 
the work, the study can obtain the optimal order quantity, 
shortages and minimum cost. 
 
Step 1. Obtain the possibly maximum unit cost as 

follows: c 
*
  $23.707 / item 

 
Step 2. Consider the condition of purchasing price break 

segment; there are two scenarios, 

c
5 


 

23
 and 

c
 4 


 

23.5
 , 

satisfying 
23 ≤ c j    23.707 

. One has  

   
 

yc4  23.5  MAX1500,1588.96  1588.96 ;  
 

yc5  23.0  MAX2000,1604.19  2000 and  

Bc4  23.5  193.95 
   

 

; Bc5    23.0  239.89 
 

      
 

 

Thus, the 

TCUyc
 j 

,
 

Bc
 j 


 from Equation (10) at order and 

shortage quantities is given by 
 

TCUyc4  23.5, Bc4  23.5  TCU(1588.96,193.95) 1244119 

TCUyc5  23.0, Bc5  23.0  TCU(2000,239.89)  1218452 

 
Step 3. Since 
 

TCUyc4   23.5, Bc4   23.5  TCUyc5   23.0, Bc5   23.0,  

one has the optimal order quantity, 
EOQ  2000 ,  the  

shortage backordering, 
B

 


 
239.89

 , and minimum total 
relevant cost, TCU=1218452, under the purchasing cost 

of 
c

5    23.0 . 

 

Example 2 

 
If D is changed to 15,000 units/year, K is changed to 
$300/cycle, and the supplier offers another price discount 
schedule as follows (Table 3).  

The same procedures are performed as Example 1. Thus, 

the study has the optimal order quantity, 
EOQ

 


 
1546.41

 , 

the shortage backordering, B  261, and minimum total 
relevant cost, TCU = 385171, under the 



 
 
 

 
Table 2. Purchase price discount structure.  

 

 j 
y

 j −1  

~
  

y
 j   c 

 

1 0   y  500  c1  25.0  
 

2 500 ≤  y  1000  c2  24.5  
 

3 1000 ≤  y  1500  c3  24.0  
 

4 1500 ≤ y  2000  c4  23.5  
 

5 y ≥ 2000  c5  23.0  
 

       

 Table 3. Purchase price discount structure.     
 

       
 

 j y
 j −1  

~
  

y
 j 

 c   
 

      
 

1 0   y  500 c1  24.04  
 

2 500 ≤  y  1000 c2  24.03  
 

3 1000 ≤  y  1500 c3  24.02  
 

4 1500 ≤  y  2000 c4  24.01  
 

 5 y ≥ 2000 
c

5  24.00  
 

 
 

purchasing cost of 
c

4   

 
24.01

 . 

 

Example 3 

 

If all parameters are same as Example 2 except defective 
rate is changed to 0.03, the optimal solution will leads to  
(1) the optimal order quantity, 

EOQ
 

 

1560
 (2) the shortage 

backordering, 
B

 


 
260

 (3) minimum total relevant cost, 

TCU= 389204 (4) the unit purchasing cost, 
c

4   


 
24.01

. 

 

CONCLUSIONS 

 

In this paper, an economical order quantity model with 
imperfect quality and shortage backordering under 
inspection errors and quantity discounts was developed. 
Since the optimal solution should simultaneously 
determine the lot size, shortages, and purchase price, we 
tactfully restructured the mathematical model using the 
relationship between the order quantity and shortages. To 
find the optimal solution, an algorithm is further built. 
Numerical computations show that our algorithm is 
intuitively simple and efficient, in which it requests fewer 
iterations.  

Numerical results also revealed that (1) the lowest unit 
purchasing cost may not guarantee to obtain the 
minimum total relevant cost (2) the policy of quantity dis-
counts has significantly influence on the optimal solution 

(3) the more defective rate, the more total relevant cost is  
(4) if defective rate increases, the order quantity 
increases while shortages decreases under the same unit 
purchasing cost. Furthermore, when all items are perfect 

 
 
(that is, no screening process is needed) and the supplier 
 

does not provide quantity discounts (that is, 
c

 
j
 


 
c

 ), the 
model developed in this study reduces to the classic 
economic order quantity model with shortages. 
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