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Currently, it is unanimous the fact that the ecosystem approach gives important insights to support fisheries 
stock assessment and management and healthy sustain aquatic ecosystems. This work aims at the 
quantification of energy flows at várzea (Amazon floodplain) and the simulation of increase in the fishing effort 
regarding the biggest predators, the catfish, and decrease of flooded forest cover. It was used the Ecopath with 
Ecosim software to build BAGRES model, which could allow inferences on ecosystem stability. Results showed 
that: i) BAGRES model has high overhead (69.7%) and Production/Respiration rate very close to 1, showing that 
this floodplain system is sufficiently mature and capable to support disturbance; ii) Finn’s cycling index for 
BAGRES (14.6%) is high when compared to other worldwide system; iii) increasing the effort of the catch of 
three species of Brachyplatystoma (catfish) have positive effects on biomass and consequently catch and 
landing of their main preys; iv) in the simulation of deforestation of Floodplain Forest (with no natural 
regeneration), all species are prejudiced (no exception), including Brachyplatystoma groups that do not use 
flooded environment. Therefore, the indirect consequence of the deforestation is more intense over fish stocks 
than increasing fishing effort. The BAGRES model results have important implications for the current policy-
making for inland fishing in Brazil, currently mostly based on “defeso” (fishing restriction season), suggesting 
the necessity of incorporate the impacts which drive the deforestation in Amazon Floodplain. 
 
Key words: Brachyplatystoma sp; várzea, Amazon floodplain; fisheries; Ecopath with Ecosim. 

 
INTRODUCTION 

 
The ecosystem concept is considered the most important 
in Ecology because it combines other topics like popu-
lation, community, flows among components, energy, 
cycling, predation, resources sustainable management 
and conservation (Cherret, 1989). Food webs are syno-
nymous of ecosystems and it may be defined as complex 
adaptive systems (Power and Dietrich, 2002). Mathemati-
cal models that describe food webs can be supportive to 
fishery stock management, since they are complement-
tary to the stock assessment models, which typically 
focus on a single target species.  
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Nonetheless, these traditional models ones have been 

proven to be insufficient to avoid overexploitation on fish-
ing resources and or their declination due to habitat 
degradation (Mace, 2001; Hilborn et al., 2003; FAO, 
2003).  

Ecosystem-based fisheries management (EBFM) is a 
new approach for fishery management, essentially rever-
sing the order of management priorities to start with the 
ecosystem rather than the target species, aiming ensure 
sustainable and healthy aquatic ecosystems (Pikitch et 
al., 2004). 

Although most of scientific articles about EBFM are 
related to marine system (see for example Heymans et 

al., 2004), the use of EBFM concepts in freshwater is 
important because inland fisheries are more vulnerable to 
environmental changes and it plays an essential role as 
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worldwide food security (FAO, 2002). 
Fish species represent one of the most important 

resources along Amazon River in Brazil and it contributes 
significantly to the local economy, playing a vital role in 
the local diet as one of the primary sources of protein for 
the majority of the population. Batista et al. (1998) 
estimated a daily fish consumption of 550 g per person in 
riverine communities.  

Fishing is also important for the Amazon Basin econo-
my and it has been is focused on larger catfish species 
that are not consumed by local population. However, they 
constitute valuable resource and are exported to several 
countries. Unfortunately, in the last decades, there are 
emerging signals of overexploitation of some species 
including catfish (Goulding, 1980; Bayley and Petrere, 
1989; Barthem and Goulding, 1997; Petrere et al., 2004; 
Fabrè et al., 2005).  

One thousand three hundred species of fish recorded in 
Amazon depend, directly or indirectly, on Várzea 
(Amazon Floodplain) and on the flood pulse (Junk et al., 
1989).  

During inundation, fish migrate into floodplain forests to 
feed on fruits, seeds and insects, in an area of superior to 

60,000 km
2
 in size and which make up the major source 

of carbon for local fisheries (Araújo-Lima et al., 1998; 
Araújo- Lima and Goulding, 1997). One of the main 
trophic characteristics of the Amazon floodplain is the 
high degree of omnivory, which place some uncertainty 
concerning the carbon dynamics tracking in this system 
(Bayley, 1983).  

Bearing the above context in mind, the aims of this 
article are: (i) the quantification food web of the Amazon 
River including the commercially exploited catfishes 
species: Brachyplatystoma rousseauxii (dourada), Bra-
chyplatystoma vaillantii (piramutaba), Brachyplatystoma 
filamentosum (piraíba), Pseudoplatystoma fasciatum 
(surubim) and Pseudoplatystoma tigrinum (caparari); (ii) 
the verification, via simulation, of the catfish stocks 
respond to both fishing pressure increment and the cut of 
the floodplain forest; (iii) compare the outcomes of the 
model with the ones previously obtained for the Upper 
Parana River floodplain (PLANÍCIE model, Angelini and 
Agostinho 2005a); and (iv) quantify the direct and indirect 
interactions among groups using the Leontief impact 
matrix. 
 

 
Methods 

 
Model 
 
The Ecopath software (Christensen and Pauly, 1993) was employed 
to build the food web model. Ecopath is a model of mass balance 
developed by Polovina (1984) with approach of energy flows propo-
sed by Ulanowicz (1986). The basic assumption in these models is 
that the input to each group is equal to the output (conditions of 
balance) . Tus, a series of biomass budget equations are determined 
for each group as: 

 
 
 
 

 
Production–all predation on each grouping – non-predatory morta-

lity – all exports = 0 
 
Walters et al. (1997) upgraded the steady-state model in Ecopath, 
including a routine that provides a framework for management 
environmental simulation (Ecosim). The resulting budget equations 
become a system of simultaneous equations following the formula: 
 
0 = Bi * PBi * EEi - Yi +  j (Bj * QBj * DCji) (1) 
 
where: Bi is the biomass of (i), (PBi) is the production/biomass ratio 
of (i) that is equal to the total mortality rate (Zi), EEi – ecotrophic 
efficiency, i.e. fraction of production of (i) that is consumed, Yi is the 
yield of (i) or its catch in weight, Bj is the biomass of the predators, 
QBj is food consumption per unit of biomass for consumer j and DCji 
is the fraction of i in the diet of j.  

The model developed for Amazon Floodplain was baptized 
BAGRES (catfishes in Portuguese). Fishing simulations were carried 
out for five years multiplying by 2, 3 and 4 the fishing effort of 2001 
(last observed year). Deforestation was simulated reaching up 25%, 
50%, 75% and finally 100% (no regeneration). In addition, the 
model assessed ecosystems attributes sensu Ulanowicz (1986) and 
the Leontief impact matrix, which are discussed in detail. 
 

 
Data Source and Components 
 
The input values for the BAGRES model parameters were obtained 
from the literature. Flooded forest biomass and production data was 
quoted in Worbes (1997). Other sources were used: Junk and 
Piedade (1997) for macrophytes; Putz and Junk (1997) for 
phytoplankton; Doyle (1991) for periphyton; Bayley (1983) for 
Macrobrachium; Junk and Robertson (1997) for other aquatic 
invertebrates; Adis (1997) for terrestrial invertebrates and Sipaúba  
– Tavares, et al. (1994) and Angelini et al. (1996) for zooplankton. 
Biomass values were estimated to the catfish main species, 
multiplying landing values from 2001 (MMA, 2002) for Amazonas 
and Pará States by 5, 7 or 8 as an expert’s supposition suggested 
by Barthem and Goulding (1997). Both catfish and other compo-

nents data were standardized to the kg*ha
-1

 or kg*ha
-1

*year
-1

.  
Each one of the 14 more abundant species was represented by 

one compartment (components 9-22 in Table 1), for which PB was 
estimated using Z parameter (total mortality) and QB using 
Palomares and Pauly (1998) empirical regression. When B was 
unknown, EE’s values were provided all between 0.9 and 0.99. 
Data on the Family Gymnotidae and three other components were 
included to the model (components 23-26) based on their feeding 
habit (piscivores, detritivores and omnivorous). For these 
constituents, there were estimated PB and QB from species in the 
same trophic level.  

PB values for catfish species, there were calculated used data 
from Alonso (2002) for B. rousseauxii, Pirker (2001) and Barthem 
(1990) for B. vailantii, Muñoz-Sosa (1996) for B. filamentosum, 
Rufino and Isaac (2000, 1995) and Angelini and Agostinho (2005b) 
for P. tigrinum and P. fasciatum. Data on diet composition were 
obtained from Fabrè et al. (2000), Avila (1999), Araújo-Lima and 
Goulding (1997), Barthem and Goulding (1997), Leon (1996), Célis-
Perdomo (1994), Córdoba (1994) and Maldonado (1974).  

For the remaining species, information were obtained in Vieira 
(2003) and Isaac and Moura (1998) for Semaprochilodus taeniurus 
and Semaprochilodus insignis, Angelini (2002) for Mylossoma 
aureum, Angelini and Agostinho (2005b), Ruffino and Isaac (2000) 
and Isaac and Ruffino (1996) for Colossoma macropomum, 
Prochilodous nigricans and Schyzodum fasciatus, Angelini and 
Petrere (1996) for Family Gymnotidae, and Silva-Jr. (1998) for 
Triportheus elongatus and Hypophtalmus marginatus. 
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Table 1. Basic parameters inputs and outputs (in parentheses) from Ecopath of the BAGRES model. B: Biomass; PB: 

Production/Biomass; QB: Consumption/Biomass; EE: Ecotrophic Efficiency; TL: Trophic Level; Flow in kg*ha
-1

*ano
-1

, 

biomass in kg*ha
-1

 
 

Compartment B PB QB EE TL No. of pathways Pathways length 

Phytoplankton 17.100 205.000  (0.393) 1.0   

Flooded Forest 39060.0 0.100  (0.015) 1.0   

Periphyton 38.000 8.800  (0.183) 1.0   

Macrophytes 17.100 4.000  (0.903) 1.0   

Macrobrachium 3.200 8.000 80.000 (0.316) 2.0 (1) (1.00) 

Terrestrial Inv. 0.210 25.000 250.000 (0.617) 2.0 (2) (1.00) 

Aquatic Inv. 1.300 25.000 250.000 (0.218) 2.0 (4) (1.00) 

Zooplankton 24.200 54.700 273.500 (0.530) 2.1 (2) (1.00) 

B.rousseauxii 11.234 1.310 7.340 (0.094) 3.2 (165) (3.58) 

B.vaillanti 1.972 1.180 7.340 (0.085) 3.2 (142) (3.73) 

B.filamentosum 1.330 0.396 (2.125) 0.505 3.3 (172) (3.63) 

P.tigrinum 1.300 4.000 10.000 (0.199) 3.3 (47) (2.70) 

P.fasciatum 1.900 4.000 12.000 (0.447) 3.3 (79) (3.08) 

S.insignis 5.100 5.100 12.000 (0.994) 2.0 (2) (1.00) 

S.taeniurus 5.100 5.100 12.000 (0.994) 2.0 (2) (1.00) 

M.aureum 4.644 2.230 8.300 (0.964) 2.2 (7) (1.86) 

P.nigricans 5.125 4.570 10.000 (0.944) 2.0 (3) (1.00) 

T.elongatus 3.900 3.400 8.750 (0.924) 2.0 (3) (1.00) 

H.marginatus 4.123 3.400 7.600 (0.976) 3.1 (2) (2.00) 

S.fasciatus 2.800 4.520 16.470 (0.984) 2.0 (2) (1.00) 

C.monoculus 1.300 2.130 (4.735) 0.992 3.1 (16) (2.38) 

C.macropomum 1.150 1.400 8.300 (0.851) 2.1 (3) (1.67) 

Gymnotidae (4.424) 4.000 10.000 0.990 2.0 (3) (1.00) 

Other detritivores 4.740 1.700 12.000 (0.951) 2.0 (1) (1.00) 

Other piscivores 3.600 1.500 6.200 (0.569) 3.3 (79) (3.16) 

Other omnivores 3.900 1.900 8.300 (0.936) 2.4 (13) (1.69) 

Detritus    (0.683) 1.0    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. BAGRES model: Ecopath model of the várzea or Amazon Floodplain. Values of fluxes and bio-

mass of groups are included in Table 1. Just the main fluxes are showed. 
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Table 2. Diet composition of the compartments of the BAGRES model for Ecopath at Amazon Floodplain.           
                         

Prey/Predat  5 6 7 8 9 10 11 12 13 14 15 16  17 18 19 20 21 22 23 24 25 26 
or                         

Phytoplankton    0.10 0.20      0.10 0.05   0.05 0.05     0.10   0.10 

Flooded Forest   0.10          0.8       0.90    0.40 
             0            

Periphyton    0.10           0.05 0.05  0.40   0.10   0.05 

Macrophytes    0.10              0.60      0.05 

Macrobrachium      0.05 0.05                 0.10 

Ter.                        0.10 
Invertebrates                         

Aqu.             0.1           0.10 
Invertebrate             0            

Zooplankton     0.10        0.1    1.0   0.10    0.10 
             0    0        

B.rousseauxii                         
                         

B.vaillanti                         
                         

B.filamentosum                         
                         

P.tigrinum      0.01 0.01 0.01                 

P.fasciatum      0.01 0.01 0.05               0.10  

S.insignis      0.19 0.10 0.19 0.10 0.10         0.20    0.10  

S.taeniurus      0.19 0.10 0.19 0.10 0.10         0.20    0.10  

M.aureum      0.05  0.14  0.10         0.10    0.10  

P.nigricans      0.15 0.20  0.10 0.10             0.10  

T.elongatus      0.07  0.15 0.10 0.05         0.20    0.10  

H.marginatus      0.07 0.05  0.15 0.10             0.10  

S.fasciatus      0.05 0.15  0.10 0.15         0.20      

C.monoculus        0.05 0.05 0.05         0.10      

C.macropomum         0.05               

Gymnotidae      0.10 0.20 0.20 0.10 0.10             0.10  

Other detr.      0.03 0.05  0.10              0.10  

Other piscv.          0.10               

Other omniv.      0.03  0.05 0.10              0.10  

Detritus  1.00 0.90 0.70 0.70      0.90 0.95   0.90 0.90     0.80 1.00    
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Figure 2. Variations in proportion Biomass/Original Biomass of the main species in the BAGRES model, 

with fishing effort increasing, calculated by Ecopath with Ecosim. Fishing effort = 1 is equivalent to 

observed effort in 2001. To increase fishing effort, 2, 3 and 4 multiplies it. 
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Table 3. Attributes values for the Amazon Floodplain (BAGRES model) and Upper Paraná River Floodplain (PLANÍCIE model). 

Trends indicate indices behavior in accordance with theory of ecosystem development of Odum (1969). Upper Paraná River 

Floodplain values from Angelini and Agostinho (2005). 
 

Ecosystem Attributes Bagres (this paper) Upper Paraná Trends 

Primary Production/Respiration 1.65 2.1 diminishing 

Primary Production/Biomass 0.199 10.3 diminishing 

Finn cycling index (%) 14.5 6.8 increasing 

Path length – [Tf / (TEx+TRe)] 3.10 2.7 increasing 

Average residence time (TB/Tsaídas) 5.02 0.1 increasing 

Flow from detritus 0.6 0.52 increasing 

Overhead (%) 69.7 65% increasing 

Ascendência (%) 30.3 35% diminishing  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Variations in proportion Biomass/Original Biomass of the main species in the BAGRES 

model under deforestation of Floodplain Forest (várzea) calculated by Ecopath with Ecosim. 
 

 

RESULTS 

 

Table 1 shows values of the parameters, and the number 
of input pathways and mean length of pathways for each 
compartment of BAGRES model. The diet matrix is given 
on Table 2 and Figure 1 depicts the main fluxes in 
BAGRES food web.  

Table 3 shows a comparison ecosystems attributes of 

BAGRES model comparing them with PLANÍCIE model 
(Angelini and Agostinho, 2005a) and also ecosystems 
development trends sensu Odum (1969). 

 
 

 

Figure 2 shows the effect of the increasing of the 
fishing effort effects on most important species. Results 
are displayed as the changes in proportion between Final 
Biomass and Initial Biomass, respectively, in 2006 and 
2001.  

Figure 3 presents an unusual kind of simulation to the 
Ecopath models, because it modifies primary producer, 
reducing floodplain forest biomass (component 2). There-
fore, the simulation of deforestation was performed in the 
course of 7 years, showing that all fish species will be 
threatened, in special C. macropomum and M. aureum, 
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Figure 4. Leontief Impact Matrix (BAGRES model), showing impact positives (bars up) and negatives 

(bars down) on compartments of columns. Just main impacting groups are showing in the rows. 
 
 

 

whose diets are based on fruits and seeds. 
Figure 4 depicts Leontief matrix, where the increase of 

20% in the biomass of the impacting groups (rows) 
causes impact direct and indirect on impacted groups 
(columns). Compartments that cause more alterations on 
the ecosystem are Detritus, Fishing, B. rousseauxii, 

Zooplankton and Flooded Forest. 
 

 

DISCUSSION 

 

Simulations showed that three Brachyplatystoma compo-
nents had the highest lengths and number of pathways. 
Generalist diet of these components (Table 2) seems to 
have contributed significantly to this result, thus these 
three catfishes increasing redundancy and resilience. 
This topic was stressed by Angelini and Agostinho 
(2005a) which showed length and number of pathways 
are attributes with high correlation to system’s maturity.  

High homeostasis was confirmed by other attributes 
(see Table 3). For instance, the high overhead (69.7%) 
and Production/Respiration rate very close to 1, indicates 
that this floodplain system is sufficiently mature and 
capable to support disturbance. Odum (1969) proposes 

 
 
 

 

that a periodic physic perturbation (flood pulse) maintains 
the system in a intermediate state between mature and 
“young”. However, in the present case, the outputs of the 
model suggest that Amazon Floodplain is a mature 
system.  

Finn’s cycling index for BAGRES (14.6%) was high when 
compared to other system worldwide (Christensen and 
Pauly, 1993) corroborating the trends of ecosystem 
development theory that foresee detritus as a possible 
main source of energy.  

Undoubtedly, BAGRES may be considered more mature 
when compared with the PLANÍCIE model (Table 3), even 
considering that the later encompasses nearly 2,000 
pathways whereas BAGRES, just 750. This difference may 
be is partly explained due to the fact that there are many 
detailed studies on the diet of fishes species from the 
Upper Paraná River Floodplain (see, for instance, Hahn 
et al., 1997) whereas this subject is poorly know for the 
Amazon Floodplain.  

However, resilience in BAGRES was higher than 
PLANÍCIE because floodplain forest (the main source of 
detritus) strongly influences the Amazon ecosystem and 

the floodplain forest does not exist anymore along the 
margins of Upper Paraná River. 
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Fishing and removal of Flooded Forest simulations 
 
The increase of the fishing effort on the three Brachy-
platystoma constituents had positive effects on the 
biomass and consequently in the landings of their main 
preys (Figure 2). This agree with the work of Barthem and 
Goulding (1997), who estimated that B. rousseauxii could 
be consuming more fish than the whole annual landings 
registered in the Manaus City (13,000 metric tons in 
2001).  

The increase of the biomass of two Pseudoplatystoma 
groups with increasing fishing effort (Figure 2) may be 
explained by the reduction in the abundance of their main 
predator, Brachyplatystoma spp. Herein Fabrè et al. 
(2000) observed that in Upper Amazon River there was 
an increase in Pseudoplatystoma catch after the dimini-
shment of Brachyplatystoma spp landings, especially B. 
filamentosum (which was dominant species over 50’s 
years) . This local fact validates our simulation for the 
basin. In addition, Pseudoplatystoma groups could have 
their landings increased whether the effort became 
higher.  

Figure 3 depicts simulations results from the cut of 
Flooded Forest (with no natural regeneration). Without 
exception, all species were jeopardized, including the 
Brachyplatystoma components that do not use (directly) 
flooded environment. Therefore, indirect consequence 
regarding deforestation of the várzea would be more 
intense over fishing stocks than increasing the fishing 
effort. 

 

Conclusion 
 
Amazon Floodplain is a complex environment, which 
depends on periodic inundation. The main concern about 
BAGRES model is that if it truly represents the ecosystem. 
Although, flood pulses have been proven to influence the 
organisms, other ecological process, such as compete-
tion, predation and the detritus recycling also play rele-
vant rules on structure community and respective food 
web (William and Martinez, 2000) thus allowing the 
overall approach employed here, because it is unique in 
considering all relevant ecological factors on both the 
organisms and the environment.  

Accordingly, the BAGRES model may be regarded as a 
useful tool for management since it incorporates most the 
relevant ecological process and, in addition, may also 
simulating the effect of deforestation in Amazon Flood-
plain on the aquatic ecosystem. Therefore BAGRES out-
comes are reliable and reasonably realistic for the 
Amazon River system and could readily contribute for the 
current policy of management inland fisheries in Brazil, 
mostly based on “defeso” (fishery restriction season). 
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